A mathematical excursion on the topic of....

Pick’s Theorem

&
Ehrhart Polynomials

Dr Richard Elwes
Wednesday 15 February 2012

University of Leeds



Pick’s Theorem

In 1899, Georg Pick found
a single, simple formula
for calculating the area of
many different shapes.




Pick’s Theorem

A lattice polygon
is a 2d shape
(without holes)
built from
straight lines,
whose corners
all have integer
coordinates.




Pick’s Theorem

Pick’s Theorem
Let P be a lattice polygon.

Suppose that P contains C lattice points
in its interior, and B on its boundary.

Then the area (A) of P is:
A=C+%B—1



Pick’s Theorem

Here, B=C=0.
So,

A=9+(3x9)—1
= 123,




Pick’s Theorem

Sketch Proof

Step 1: Show that if P
& Q each satisfy the
theorem then so does
R, which consists of P
& Q joined along an
edge.




Pick’s Theorem

Proof of Step 1. We are supposing that
A,=C,+3B,—1
&
1
Aqa=Cqt+3By—1

Clearly also, Az = Ay + A,
So
Ap=(Cp+ CQ)+%(BP+BQ)—2 [i]



Pick’s Theorem

Suppose there are
D points on the
edge joining P & Q.

Then
Ch=C+Cp+D-2

So
CotCq=Ch—D+2
[ii]




Pick’s Theorem

But also...
Br=B,+B,y—2D +2

So
Bp+B,=Bg+2D -2
[iii]




Pick’s Theorem

Putting these together...
Az =(Cot Cp) +3(Bp+ By) — 2
becomes
A,=(Co=D+2)+3(By+2D—2) -2
SO
A,=Cp+3B,—1
as required.

[i]



Pick’s Theorem

Step 2

Every lattice polygon
can be broken into
triangles, joined
along edges.

Proof idea:

induction on the
number of vertices.




Pick’s Theorem

Step 3 Every lattice
triangle satisfies Pick’s
theorem.

Sketch. (a) It is easy to
check that upright,
right-angled triangles
and rectangles (with
two edges parallel to
the lattice) obey the
theorem.




Pick’s Theorem

Sketch (b) Every e
triangle can be ..
expanded to a
regular rectangle by . . .
adding on three
regular triangles. e o e
By an argument
similar to step 1, it ’ ) )
follows that the v e e

triangle obeys the
theorem. e o o e e e



Reeve Tetrahedra

Does Pick’s theorem generalise to 3 dimensions?
In 1957, John Reeve delivered some bad news.
Reeve tetrahedra have vertices at:

(OIOIO)I (1IOIO)I (OlllO)I & (1lllr)
where r is a positive integer.



Reeve Tetrahedra

All Reeve
tetrahedra
contain the
same number
of lattice points
(just their four
vertices).

But their
volumes are

different.




Ehrhart Polynomials

In 1967, Eugene Ehrhart
found a way forward.

His idea was to inflate the
polyhedron, and then
count the number of
lattice points in the
enlarged shape.



Ehrhart Polynomials

Given a lattice
polytope P, and a -
positive integer n, -°
define nP to the .
polytope :
obtained by :
multiplying the
coordinates of
every vertex by n.




Ehrhart Polynomials

Define L,(n) to be the number of lattice points
in (or on) nP.

Ehrhart proved that L,(n) is a polynomial in n.

That is, there are real numbers a,,...,a; so that

— 3 2
Lo(n) = asn’ +a,n* +a,n +a,



Ehrhart Polynomials

Examples:

1. If Pis a unit cube, nP contains (n + 1)3 points. So,
Lo(n) =n3+3n? +3n + 1.

2. If Pis a Reeve tetrahedron, then
Lo(n) = (r/6)n°> +n? + (2 —r/6 )n + 1



Ehrhart Polynomials

What are a,,...,a;?
Ehrhart proved that...
* a,is the volume of P.

* a,is the half the total area of the faces of P
(measured in the induced lattice on each face).

* ag,is.. ?27°?

°* a,=1



Ehrhart Polynomials

Generalising to dimension d (and allowing holes):

— q pd d-1 d-2
Lo(n)=a,n®+a,,n"t+a,,n"?+.+a,n+a,

where
* a,= \/(P)
* a,,=3V(0P) (where AP is the boundary of P)

® 4,4, 043 044, 0;= 227

* a,= X(P)i.e. the Euler characteristic of P.



Pick’s Theorem Revisited

When d=2 (and X (P)=1) we recover Pick’s theorem:
Lp(n) = V(P)n? + 3V(3P)n + X(P)

Recall that C is the number of lattice points in P’s
interior, and B is the number on its boundary.

Setting n=1, we get L,(1) = B+C, and V(9dP) = B.

SoV(P)=A=C+%B—1, as expected.



Pick’s Theorem Revisited

In 2d, we can generalise Pick’s theorem to
lattice polygons P containing h holes:

Since X(P)=1-h, weget A=C+3B+(h—1).



Ehrhart Polynomials

What happens if we use negative values of n? Does
the number L,(-n) have any geometric meaning?

Answer: the Ehrhart-MacDonald Reciprocity Law.

This tells us the number of lattice points in the
interior (P°) of P, written as ‘L,.. It says:

Lp(-n) = (-1)° Lp+(n)



Ehrhart Polynomials

Two obvious (but hard!) questions:
1. Whatarea,,, a,,-...,0,?

—They are not multiples of V(9d?P), V(93P),...

— Reeve tetrahedra illustrate this:
In all casesa, =2-r/6
..while V(9?P) = 6 is independent of r.



Ehrhart Polynomials

—In 1991, James Pommersheim provided a formula
for a, when d=3, essentially in terms of the
angles between faces and number-theoretical
objects called Dedekind sums.

—In 1994, Sylvain Cappell & Julius Shaneson found
formulae for all g, in terms of related cotangent
expressions, using deep methods from Toric
Geometry.



Ehrhart Polynomials

2. What about the roots of Ehrhart polynomials?
[Beck, De Loera, Develin, Pfeifle, Stanley, 2004]

— The real roots of a convex lattice polytope of
dimension d all lie in the interval [_d, E‘)

— Complex roots are bounded in discs centred at
the origin:

Radius 8.5 158 25.7 383 53.5 71.4 92.0



Thank You!
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