A mathematical excursion on the topic of....

Pick's Theorem & & Ehrhart Polynomials

Dr Richard Elwes Wednesday 1st February 2012 University of Leeds

In 1899, Georg Pick found a single, simple formula for calculating the area of many different shapes.

A *lattice polygon* is a 2d shape (without holes) built from straight lines,

whose corners all have integer coordinates.

Pick's Theorem

Let *P* be a lattice polygon.

Suppose that *P* contains *C* lattice points in its interior, and *B* on its boundary.

Then the area (A) of P is: $A = C + \frac{1}{2}B - 1$

Here, B = C = 9. So, $A = 9 + (\frac{1}{2} \times 9) - 1$ $= 12\frac{1}{2}$.

Sketch Proof

Step 1: Show that if *P* & *Q* each satisfy the theorem then so does *R*, which consists of *P* & *Q* joined along an edge.

Proof of Step 1. We are supposing that $A_{P} = C_{P} + \frac{1}{2}B_{P} - 1$ & $A_{Q} = C_{Q} + \frac{1}{2}B_{Q} - 1$

Clearly also, $A_R = A_P + A_Q$. So

$$A_R = (C_P + C_Q) + \frac{1}{2} (B_P + B_Q) - 2$$
 [i]

Suppose there are *D* points on the edge joining *P* & *Q*. Then $C_R = C_P + C_Q + D - 2$

$$C_P + C_Q = C_R - D + 2$$

But also... $B_{R} = B_{P} + B_{Q} - 2D + 2$ So $B_{P} + B_{Q} = B_{R} + 2D - 2$ [iii]

Putting these together...

$$A_R = (C_P + C_Q) + \frac{1}{2}(B_P + B_Q) - 2 \qquad [i]$$

becomes

SO

$$A_R = (C_R - D + 2) + \frac{1}{2}(B_R + 2D - 2) - 2$$

$$A_R = C_R + \frac{1}{2}B_R - 1$$

as required.

Step 2

Every lattice polygon can be broken into triangles, joined along edges.

Proof idea: induction on the number of vertices.

Step 3 Every lattice triangle satisfies Pick's theorem.

Sketch. (a) It is easy to check that *upright, right-angled* triangles and rectangles (with two edges parallel to the lattice) obey the theorem.

Sketch (b) Every triangle can be expanded to a regular rectangle by adding on three regular triangles.

By an argument similar to step 1, it follows that the triangle obeys the theorem.

Reeve Tetrahedra

Does Pick's theorem generalise to 3 dimensions?

In 1957, John Reeve delivered some bad news.

Reeve tetrahedra have vertices at: (0,0,0), (1,0,0), (0,1,0), & (1,1,r) where *r* is a positive integer.

Reeve Tetrahedra

All Reeve tetrahedra contain the same number of lattice points (just their four vertices). But their volumes are different.

In 1967, Eugène Ehrhart found a way forward.

His idea was to inflate the polyhedron, and then count the number of lattice points in the enlarged shape.

Given a lattice polytope P, and a positive integer n, define *nP* to the polytope obtained by multiplying the coordinates of every vertex by *n*.

Define $L_P(n)$ to be the number of lattice points in (or on) *nP*.

Ehrhart proved that $L_P(n)$ is a polynomial in n.

That is, there are real numbers $a_0, ..., a_3$ so that

$$L_P(n) = a_3 n^3 + a_2 n^2 + a_1 n + a_0$$

Examples:

1. If P is a unit cube, nP contains $(n + 1)^3$ points. So, $L_P(n) = n^3 + 3n^2 + 3n + 1.$

2. If *P* is a Reeve tetrahedron, then $L_P(n) = (r/6)n^3 + n^2 + (2 - r/6)n + 1$

What are *a*₀,...,*a*₃?

Ehrhart proved that...

- a_3 is the volume of P.
- *a₂* is the *half the total area* of the faces of *P* (measured in the induced lattice on each face).
- *a*₁ is... ???
- *a*₀ = 1

Generalising to dimension *d* (and allowing holes):

$$L_{P}(n) = a_{d} n^{d} + a_{d-1} n^{d-1} + a_{d-2} n^{d-2} + \dots + a_{1} n + a_{0}$$

where

- $a_d = V(P)$
- $a_{d-1} = \frac{1}{2}V(\partial P)$ (where ∂P is the boundary of P)
- $a_{d-2}, a_{d-3}, a_{d-4}, \dots, a_1 = ???$
- $a_0 = \chi(P)$ i.e. the Euler characteristic of *P*.

Pick's Theorem Revisited

When d=2 (and $\chi(P)=1$) we recover Pick's theorem: $L_P(n) = V(P) n^2 + \frac{1}{2}V(\partial P) n + \chi(P)$

Recall that C is the number of lattice points in P's interior, and B is the number on its boundary.

Setting n=1, we get $L_P(1) = B+C$, and $V(\partial P) = B$.

So
$$V(P) = A = C + \frac{1}{2}B - 1$$
, as expected.

Pick's Theorem Revisited

In 2d, we can generalise Pick's theorem to lattice polygons *P* containing *h* holes:

Since $\chi(P) = 1 - h$, we get $A = C + \frac{1}{2}B + (h - 1)$.

What happens if we use negative values of n? Does the number $L_P(-n)$ have any geometric meaning?

Answer: the Ehrhart-MacDonald Reciprocity Law.

This tells us the number of lattice points in the *interior* (P°) of P, written as ' $L_{P^{\circ}}$ '. It says:

$$L_{P}(-n) = (-1)^{d} L_{P^{\circ}}(n)$$

Two obvious (but hard!) questions:

1. What are $a_{d-2}, a_{d-1}, ..., a_1$?

- They are **not** multiples of $V(\partial^2 P)$, $V(\partial^3 P)$,...

- Reeve tetrahedra illustrate this: In all cases $a_1 = 2 - r/6$...while $V(\partial^2 P) = 6$ is independent of r.

 In 1991, James Pommersheim provided a formula for a₁ when d=3, essentially in terms of the angles between faces and number-theoretical objects called *Dedekind sums*.

 In 1994, Sylvain Cappell & Julius Shaneson found formulae for all a_i in terms of related *cotangent expressions*, using deep methods from *Toric Geometry*.

2. What about the *roots* of Ehrhart polynomials? [Beck, De Loera, Develin, Pfeifle, Stanley, 2004]

- The *real* roots of a convex lattice polytope of dimension *d* all lie in the interval $\left[-\frac{d}{2}\right]$
- Complex roots are bounded in discs centred at the origin:

d	2	3	4	5	6	7	8	9
Radius	3.6	8.5	15.8	25.7	38.3	53.5	71.4	92.0

Thank You!

References

"Computing the Continuous Discretely"

- Matthias Beck & Sinai Robins [Springer, 2009]

"Enumerative Combinatorics, Volume 1." - Richard Stanley [CUP, updated 2011]