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A mathematical excursion on the topic of…. 



Pick’s Theorem 

 In 1899, Georg Pick found 
a single, simple formula 
for calculating the area of 
many different shapes. 

 

 

  



Pick’s Theorem 

A lattice polygon 
is a 2d shape 
(without holes) 
built from 
straight lines, 
whose corners 
all have integer 
coordinates.  



Pick’s Theorem 

Pick’s Theorem 

 Let P be a lattice polygon. 

 Suppose that P contains C lattice points 
in its interior, and B on its boundary. 

 

 Then the area (A) of P is: 

A = C + B – 1 
 

 



Pick’s Theorem 

Here, B = C = 9. 
 
 So, 

 
A = 9 + ( × 9) – 1 

=   12. 



Pick’s Theorem 

Sketch Proof 

 Step 1: Show that if P 
& Q each satisfy the 
theorem then so does 
R, which consists of P 
& Q joined along an 
edge. 

P Q 



Pick’s Theorem 

Proof of Step 1. We are supposing that 

 AP = CP + BP – 1 

& 

AQ = CQ + BQ – 1 

 

Clearly also, AR = AP + AQ. 

So 

   AR = (CP + CQ) +  (BP + BQ) – 2 [i] 



Pick’s Theorem 

 Suppose there are 
D points on the 
edge joining P & Q. 

 Then 

CR = CP + CQ + D – 2 

 

 So 

CP + CQ = CR – D + 2 

[ii] 

 



Pick’s Theorem 

 But also… 

BR = BP + BQ – 2D + 2 

 

 So 

BP + BQ = BR + 2D – 2 

[iii] 



Pick’s Theorem 

Putting these together… 

      AR = (CP + CQ) + (BP + BQ) – 2  [i] 

becomes 

AR = (CR – D + 2) + (BR + 2D – 2) – 2 

so 

AR = CR + BR – 1 

as required. 



Pick’s Theorem 

Step 2 

 Every lattice polygon 
can be broken into 
triangles, joined 
along edges. 

Proof idea: 
induction on the 
number of vertices. 
 



Pick’s Theorem 

Step 3  Every lattice 
triangle satisfies Pick’s 
theorem. 

 

Sketch. (a) It is easy to 
check that upright, 
right-angled triangles 
and rectangles (with 
two edges parallel to 
the lattice) obey the 
theorem. 



Pick’s Theorem 

Sketch (b) Every 
triangle can be 
expanded to a 
regular rectangle by 
adding  on three 
regular triangles. 

 By an argument 
similar to step 1, it 
follows that the 
triangle obeys the 
theorem. 



Reeve Tetrahedra 

 Does Pick’s theorem generalise to 3 dimensions? 

 

 In 1957, John Reeve delivered some bad news. 

 

 Reeve tetrahedra have vertices at: 

 (0,0,0), (1,0,0), (0,1,0), & (1,1,r) 

 where r is a positive integer. 

 

 



Reeve Tetrahedra 

 All Reeve 
tetrahedra 
contain the 
same number 
of lattice points 
(just their four 
vertices). 

 But their 
volumes are 
different. 



Ehrhart Polynomials 

  

In 1967, Eugène Ehrhart 
found a way forward. 
 
His idea was to inflate the 
polyhedron, and then 
count the number of 
lattice points in the 
enlarged shape. 



Ehrhart Polynomials 

 Given a lattice 
polytope P, and a 
positive integer n, 
define nP to the 
polytope 
obtained by 
multiplying the 
coordinates of 
every vertex by n. 



Ehrhart Polynomials 

 Define LP(n) to be the number of lattice points 
in (or on) nP. 

 

 Ehrhart proved that LP(n) is a polynomial in n. 

 

 That is, there are real numbers a0,…,a3 so that 

  

 LP(n) = a3n3 + a2n2 + a1n + a0 
 



Ehrhart Polynomials 

 Examples: 

1. If P is a unit cube, nP contains (n + 1)3 points. So,
  LP(n) = n3 + 3n2 + 3n + 1. 

 

2. If P is a Reeve tetrahedron, then 

   LP(n) = (r/6)n3 + n2 + (2 – r/6 )n + 1 

 

 

 

 



Ehrhart Polynomials 

What are a0,…,a3? 

Ehrhart proved that… 

• a3 is the volume of P. 

• a2 is the half the total area of the faces of P 
 (measured in the induced lattice on each face). 

• a1 is… ??? 

• a0 = 1 



Ehrhart Polynomials 

Generalising to dimension d (and allowing holes): 

 

 LP(n) = ad n
d + ad-1 n

d-1 + ad-2 n
d-2 +…+ a1 n + a0 

  where 

• ad = V(P) 

• ad-1 = V(∂P) (where ∂P is the boundary of P)  

• ad-2, ad-3, ad-4,…, a1 = ??? 

• a0 = χ(P) i.e. the Euler characteristic of P. 

 

 



Pick’s Theorem Revisited 

When d=2 (and χ(P)=1) we recover Pick’s theorem: 

LP(n) = V(P) n
2 + V(∂P) n + χ(P) 

 

 Recall that C is the number of lattice points in P’s 
interior, and B is the number on its boundary. 

 

 Setting n=1, we get LP(1) = B+C, and V(∂P) = B. 

 

 So V(P) = A = C + B – 1, as expected. 

 



Pick’s Theorem Revisited 

 In 2d, we can generalise Pick’s theorem to 
 lattice polygons P containing h holes: 

 

 Since χ(P)= 1 – h, we get A = C + B + (h – 1). 

 



Ehrhart Polynomials 

 What happens if we use negative values of n? Does 
the number LP(-n) have any geometric meaning? 

 

 Answer: the Ehrhart-MacDonald Reciprocity Law. 

 This tells us the number of lattice points in the 
interior (P°) of P, written as ‘LP°’. It says: 

 

  LP(-n) = (-1)d LP°(n)  
 



Ehrhart Polynomials 

Two obvious (but hard!) questions: 

1. What are ad-2, ad-1,…,a1? 

 

– They are not multiples of V(∂2P), V(∂3P),… 

 

–Reeve tetrahedra illustrate this: 

  In all cases a1 = 2 – r/6 

   …while V(∂2P) = 6 is independent of r. 



Ehrhart Polynomials 

– In 1991, James Pommersheim provided a formula 
for a1 when d=3, essentially in terms of the 
angles between faces and number-theoretical 
objects called Dedekind sums. 

 

– In 1994, Sylvain Cappell & Julius Shaneson found 
formulae for all ai in terms of related cotangent 
expressions, using deep methods from Toric 
Geometry. 



Ehrhart Polynomials 

2. What about the roots of Ehrhart polynomials? 

     [Beck, De Loera, Develin, Pfeifle, Stanley, 2004] 

 

–  The real roots of a convex lattice polytope of 
 dimension d all lie in the interval 

–  Complex roots are bounded in discs centred at 
the origin: 

 

 
d 2 3 4 5 6 7 8 9 

Radius 3.6 8.5 15.8 25.7 38.3 53.5 71.4 92.0 



Thank You! 
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