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Abstract. We consider groups G interpretable in a supersimple finite rank
theory T such that T eq eliminates ∃∞. It is shown that G has a definable
soluble radical. If G has rank 2, then if G is pseudofinite it is soluble-by-finite,
and partial results are obtained under weaker hypotheses, such as unimodularity
of the theory. A classification is obtained when T is pseudofinite and G has a
definable and definably primitive action on a rank 1 set.

1 Introduction

Shelah’s notion of simple first order theory provides a context, broader than that
of stable theories, where there is an abstract model-theoretic notion of indepen-
dence. The initial examples of simple (in fact, supersimple) theories include
the random graph, smoothly approximable structures, and pseudofinite fields.
These all arise from finite structures, and indeed have the finite model property.
Our goal is to develop the structure theory for groups with supersimple theory,
often with extra hypotheses. One such extra assumption is pseudofiniteness,
which seems very natural in view of the wealth of examples.

The theory of groups definable in supersimple (or just simple) theories is
not nearly as well developed as under stability assumptions. The main source
is [42]. There are results on connected components over specific parameter sets,
and a theory of generic types (but without stationarity). There is a version of
the Zilber Indecomposability Theorem, with some of the expected consequences.
Much of the theory in [42] is developed in the more general context of hyperde-
finable groups. But issues settled early for superstable groups are wide open in
the supersimple context. It is not known if there could be a non-abelian simple
group of SU-rank 1, or if every infinite group definable in a finite rank super-
simple theory contains an infinite abelian subgroup. Strong results have been
obtained for groups definable in particular classes of supersimple theories, such
as theories of smoothly approximable structures [28, 11], and of pseudofinite
fields [26]. These theories are measurable, in the sense of [34], and there are
the beginnings of a theory of groups definable in measurable theories; see for
example [34], [19], [20], [39].
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In this paper we investigate groups definable in supersimple finite rank the-
ories, often working under the extra assumption that the theory of the group is
pseudofinite, that is, it has infinite models but every sentence in it has a finite
model. Part of the motivation is that every pseudofinite group which is simple
(in the group-theoretic sense) has, as a pure group, supersimple finite rank the-
ory. This, partly stimulated also by the programme on simple groups of finite
Morley rank, makes it natural to try to approach finite groups from model-
theoretic hypotheses, e.g. to recover families of finite simple groups, along with
their representations. The paper [31] also contains material in this direction.
The present paper builds on results in [20] and [39].

We work under various assumptions, and with various classes of theories.
When we say that a theory T eq eliminates ∃∞, we mean that for any uniformly
definable family of sets in the sense of M eq, there is an upper bound on the
size of its finite members. The broadest class we consider is the class S of all
structures of finite rank interpretable in some supersimple theory T such that
T eq eliminates the quantifier ∃∞. The rank function considered here is SU -
rank, and the rank of a definable set X will be denoted by rk(X). So far as
possible, we work just with the assumptions for the class S, but sometimes we
work with the class M of members of S which are also ‘unimodular’. Here,
a structure M is unimodular [25] if, whenever X,Y are definable subsets of
M eq and f : X → Y and g : X → Y are definable surjections such that f
is everywhere k-to-1 and g is everywhere l-to-1 (k, l ∈ N), we have k = l. It
is easily checked that unimodularity is a property of the theory of M , that
every pseudofinite theory is unimodular, and that every measurable theory is
unimodular; see e.g. Section 3 of [19]. Sometimes, we strengthen ‘unimodular’
to the assumption ‘pseudofinite’, to obtain the class F of pseudofinite members
of S; so F ⊂M ⊂ S. The class F properly contains another class of structures
introduced in [34] and [18], and occasionally mentioned below; namely, the
class of structures elementarily equivalent to a non-principal ultraproduct of
an asymptotic class of finite structures. When investigating groups in F we
try, so far as possible, to work without the classification of finite simple groups
(CFSG).

Our main results are the following.

Theorem 1.1 Let G ∈ S. Then
(i) any soluble subgroup of G normalised by H ≤ G is contained in a definable

H-invariant soluble subgroup of G;
(ii) G has a largest soluble normal subgroup R(G), and R(G) is definable.

Theorem 1.2 Let G ∈ F have rank two. Then G is soluble-by-finite.

Theorem 1.3 Let (X,G) ∈ F be a definably primitive permutation group, and
suppose that rk(X) = 1. Let S = Soc(G). Then one of the following holds.

(i) rk(G) = 1, and S is divisible torsion-free abelian or elementary abelian,
has finite index in G, and acts regularly on X.
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(ii) rk(G) = 2. Here S is abelian so regular and identified with X. There is
an interpretable pseudofinite field F with additive group X, and G ≤ AGL1(F )
(a subgroup of finite index), in the natural action.

(iii) rk(G) = 3. There is an interpretable pseudofinite field F , S = PSL2(F ),
PSL2(F ) ≤ G ≤ PΓL2(F ), and G has the natural action on PG1(F ).

The classification of finite simple groups is used in the proof of Theorem 1.3,
but not in the proof of 1.2.

We give in Section 2 some background results, mostly known, which are used
repeatedly in the paper. In Section 3 we consider soluble groups in S. If G is
a stable group, then every soluble subgroup of G is contained in a definable
soluble subgroup of G of the same derived length, and every nilpotent subgroup
of G is contained in a definable nilpotent one of the same class; see for example
[43, Theorems 1.1.10, 1.2.11]. In Section 3 we obtain partial analogues (at least
in the soluble case) for groups in S, in particular Theorem 1.1. It follows from
Theorem 1.1(ii) that there is a good general description of groups in F (see e.g.
Proposition 3.4), and the fine structure of such groups will (assuming CFSG)
reduce to understanding soluble groups in F .

We then in Section 4 investigate rank 2 groups in M. The aim is to show
that such groups are soluble-by-finite. This would be an analogue of results in
the superstable case [8], the o-minimal case [36], and, more technically, of the
description of thorn-U rank two super-rosy NIP groups with finitely satisfiable
generics [16]. We have not managed this, but give partial results (Theorem 1.2).
This result was proved in [20], under the strong additional assumption that the
group is an ultraproduct of members of an ‘asymptotic class’. Unlike that of
[20], the proof given here does not use CFSG.

In Section 5 we consider permutation groups (X,G) in F , that is structures
(X,G) where G is a group with a faithful definable action on X. Recall that the
transitive permutation group (X,G) is primitive if there is no proper non-trivial
G-invariant equivalence relation on X, or equivalently, if point stabilisers Gx
(for x ∈ X) are maximal subgroups of G. We work under the assumption that
rk(X) = 1, and that G is definably primitive on X, that is, there is no proper
non-trivial definable G-invariant equivalence relation on X. Using CFSG, we
prove Theorem 1.3, the expected analogue of Hrushovski’s theorem about groups
in a stable theory acting definably and transitively on a strongly minimal set.
That is, we show that rk(G) ≤ 3, and that the expected classification holds. The
paper concludes with a short section related to the third and fourth questions
below. Using CFSG, we note that any rank 3 simple group in F is isomorphic to
PSL2(K) for some pseudofinite field K. Then, we note that definably primitive
permutation groups in F arise from finite permutation groups (X,G) such that
|G| is polynomially bounded in terms of |X|.

There are several easily formulated further questions.
1. If G ∈ S (possibly with extra assumptions, such as unimodularity), then

is the product of the nilpotent normal subgroups of G necessarily nilpotent and
definable? That is, is there a good notion of Fitting subgroup?

2. Is every rank 2 group in M soluble-by-finite?
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3. Describe rank three simple groups in F without use of CFSG.
4. Show that there is a function f : N→ N such that if (X,G) is a definably

primitive permutation group in F then rk(G) ≤ f(rk(X)).
Regarding Question 4, the analogous result is proved in the finite Morley

rank case in [5], and in the o-minimal case in [33]. Using results from [31] it
may be straightforward – see Remark 6.3.

Notation, and conventions. In simple theories, there are various familiar
notions of rank, namely D-rank, SU -rank, and S1-rank. It is shown in [29]
that in a supersimple theory, if a definable set X has finite rank in any of these
senses, then it has the same rank in each sense. Here we just write it as rk(X),
except in a few possibly infinite rank situations where we specify that rank
is SU -rank. (We remark that for types, even in a finite rank situation, these
ranks may differ – see [42, 5.1.15].) In addition, in a measurable theory, there
is a notion of dimension of a definable set. The dimension is an upper bound
on the SU -rank, but they may not coincide. However, this dimension behaves
essentially like rank, and in a measurable theory the results of this paper all
hold if rank is replaced by dimension.

We denote by (X,G) a permutation group G on a set X. Its degree is |X|.
If x ∈ X then Gx denotes the stabiliser of x. A G-congruence on X is a G-
invariant equivalence relation on X. We write Cn for the cyclic group of order
n. The socle of a group G, denoted Soc(G), is the subgroup generated by the
minimal normal subgroups of G. If x, y are elements of the group G then xy

denotes yxy−1 (rather than y−1xy), and if H ≤ G then Hx := {hx : h ∈ H}.
We tend to use the words ‘definable’ and ‘interpretable’ interchangeably, al-

lowing quotients. When considering ultraproducts of members of F , we typically
consider an infinite family {Mj : j ∈ J} of finite structures, and a non-principal
ultrafilter on J (usually with no specific notation). We say that some property P
holds for ultrafilter-many j ∈ J if {j ∈ J : Mj satisfies P} lies in the ultrafilter.

Acknowledgement. This research was begun during the doctoral studies at
the University of Leeds of Richard Elwes and Mark Ryten, each supported by
a Doctoral Training Grant of the EPSRC, though none of these results were
included in their PhD theses. Jaligot’s research was partially supported by
the Marie Curie FP6 Research Training Network MODNET (MRTN-CT-2004-
512234) and by the ANR grant JC05 − 47038, and Macpherson’s by EPSRC
grant EP/F009712/1.

2 Background Results

We list here some tools which will be heavily used in the paper.
First, an easy consequence of the Lascar Inequalities for SU-rank, and our

finiteness of rank assumption is the following. Below, G/H refers just to the
coset space, a definable set in the sense of T eq.

Lemma 2.1 [42, p. 168] (i) If G is a group with supersimple theory, and
H ≤ G, then |G : H| is finite if and only if SU(H) = SU(G).
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(ii) Let G ∈ S, and H be a definable subgroup of G. Then rk(H)+rk(G/H) =
rk(G).

Next, a version of the Zilber Indecomposability Theorem relevant to su-
persimple theories was first proved around 1991 in some notes of Hrushovski,
which led to the paper [24]. Hrushovski assumed that the underlying theory is
an S1-theory, which includes the assumption that rank is definable, but this is
not needed for Theorem 2.2 below. A more general statement was proved by
Wagner [42, Theorem 5.4.5] for hyperdefinable groups in simple theories. The
consequence we use is the following [20, Remark 3.5].

Theorem 2.2 (Indecomposability Theorem) Let G be a group in S, and
let {Xi : i ∈ I} be a collection of definable subsets of G. Then there exists a
definable subgroup H of G such that:

(i) H ≤ 〈Xi : i ∈ I〉, and there are n ∈ N, ε1, . . . , εn ∈ {−1, 1}, and
i1, . . . , in ∈ I, such that H ≤ Xε1

i1
. . . Xεn

in
.

(ii) Xi/H is finite for each i ∈ I.
If the collection of Xi is setwise invariant under some group Σ of definable

automorphisms of G, then H may be chosen to be Σ-invariant.

We mention some consequences of the Indecomposability Theorem used here.
A definable group G is definably simple if it has no proper non-trivial definable
normal subgroups. The proofs in [24] are for S1-theories, but just use the
Indecomposability Theorem as stated above.

Corollary 2.3 [24, Corollary 7.4], [42, Proposition 5.4.9] If G is a non-abelian
definably simple group in S, then G is a simple group.

Corollary 2.4 [24, Corollary 7.1] If G is a group in S, then the derived sub-
group G′ is definable.

We occasionally use the following theorem of Schlichting [40], reproved by
Bergman and Lenstra [3], with the formulation below as in [42, Theorem 4.2.4].
If G is a group, subgroups H,K of G are commensurable if both of |H : H ∩
K| and |K : H ∩ K| are finite. A family H of subgroups of G is uniformly
commensurable if there is n ∈ N such that |H1 : H1∩H2| < n for all H1, H2 ∈ H.
Likewise K ≤ G is uniformly commensurable to H if there is some n ∈ N such
that for all H ∈ H, we have |H : H ∩K| < n and |K : H ∩K| < n.

Theorem 2.5 Let G be a group, and H be a uniformly commensurable family
of subgroups of G. Then there is a subgroup N of G which is uniformly com-
mensurable to all members of H and is invariant under all automorphisms of
G which fix H setwise. The group N is a finite extension of the intersection of
finitely many elements of H.

In conjunction with 2.5 we make occasional use of the following easy lemma.
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Lemma 2.6 Let (X,G) be a transitive permutation group definable in a struc-
ture whose theory eliminates ∃∞ and does not have the strict order property.
Define ∼ on X by putting x ∼ y (for x, y ∈ X) if and only if |Gx : Gxy| < ∞.
Then ∼ is a definable G-congruence.

Proof. A proof assuming measurability is given in [20, Proposition 6.1].
Measure was used just to prove symmetry, but if ∼ was not symmetric it would
be a definable partial order on G with an infinite chain, yielding the strict order
property. �

The last lemma and the Indecomposability Theorem yield the following. The
assumptions in the proof in [20] include measurability. This is not needed, since
the only use is through the last lemma. Below, we say that a subgroup K of a
group G is uniformly maximal in G if there is a positive integer n such that for
any g ∈ G \K and h ∈ G, h is equal to a word of length at most n of the form
h = k1g

ε1k2g
ε2n3 . . . kt−1g

εt−1kt, where ki ∈ K for each i and εi ∈ {1,−1}. If
K is definable is G, this ensures that maximality is first-order expressible, and
preserved under elementary extensions.

Lemma 2.7 [20] Let (X,G) be a definable primitive permutation group in S,
with rk(G) > rk(X). Then (X,G) is primitive, and for x ∈ X the stabiliser Gx
is uniformly maximal in G.

Proof. See [20, Theorem 6.2]. For the last assertion, note that if Gx were
not uniformly maximal in G then there would be an ω-saturated elementary
extension (X∗, G∗) of (X,G) which is definably primitive but not primitive,
contrary to the first assertion. �

The Zilber Field Interpretation Theorem for groups of finite Morley rank has
the following analogue in our context. If a definable group H acts definably on a
definable group A, we say that A is H-minimal if there are no proper non-trivial
definable H-invariant subgroups of A.

Proposition 2.8 [20, Proposition 3.6] (Field Interpretation Theorem) Let G =
AH be a group in S. Suppose that A and H are each abelian and definable and
H is infinite and normalises A, that A is H-minimal, and that CH(A) = {1}.
Then the following hold.

(i) The subring K = Z[H]/annZ[H](A) of End(A) is a definable field; in
fact, there is an integer l such that every element of K can be represented as an
endomorphism

∑l
i=1(−1)εihi (hi ∈ H), where εi ∈ {1,−1}.

(ii) A is definably isomorphic to K+, H is isomorphic to a subgroup J of
K∗ and the action by conjugation of H on A is (after identification of K+ with
A) its action by multiplication on K.

Proof. This is essentially proved in [20, Proposition 3.6], but since it is
assumed there that rk(H) = rk(A) = 1, and since there are inaccuracies in the
proof in [20], we give the details. We write A additively.
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Let B be the union of the finite H-orbits on A. Then B is an H-invariant
subgroup of A, and is definable as ∃∞ is definable. Hence B = {0} or B = A,
by H-minimality.

We claim that B = {0}, so suppose for a contradiction that B = A. Let
a ∈ A \ {0} and h ∈ CH(a) \ {1}; such h exists, as |H : CH(a)| is finite (as aH

is by assumption finite) and H is infinite. Then CA(h) is a non-trivial definable
subgroup of A, and is H-invariant as H is abelian. The H-minimality of A forces
then CA(h) = A, a contradiction as H acts faithfully on A. Hence B = {0}.

(i) The group ring ZH can be viewed as a ring of endomorphisms of A,
extending the H-action by conjugation. If r ∈ ZH (or lies in a quotient which
acts on A) and a ∈ A, we write r · a for the image of a under r. If r ∈ ZH
then as H is abelian, Ker(r) and Im(r) are definable H-invariant subgroups of
A. Thus either Ker(r) = A, in which case r ∈ annZH(A), or Ker(r) = {0}, and
Im(r) = A. In particular, if R = ZH/ annZH(A), then non-zero elements of R
act as automorphisms of A.

Let a ∈ A\{0}, and let W be the orbit of a under the action of H. Then W
is infinite and H-invariant. Thus, by Theorem 2.2, there is an infinite definable
H-invariant subgroup C of A, with C ≤ 〈W 〉. By H-minimality, we have C = A.
Furthermore, again by Theorem 2.2, for some ` we have A = (−1)ε1W + . . . +
(−1)ε`W , where ε1, . . . ε` ∈ {1,−1}.

Define K = {Σ`i=1(−1)εihi : h ∈ H}/annZ[H](A). Then K ⊆ R ⊆ End(A).
Suppose r ∈ R \ {0}. Then r induced an automorphism of A, so there is

b ∈ A with r · b = a. Since b ∈ (−1)ε1W + . . .+ (−1)ε`W , by construction of K
there is s ∈ K with sa = b. Thus, (rs− 1) · a = 0 so as non-zero elements of R
are automorphisms, rs = 1. Hence R is a field. In addition, we have shown that
every non-zero element of R has an inverse in K; in particular, s−1 = r ∈ K, so
R = K.

(ii) Define ia : K → A by ia(r) = r · a. Then (by the definition of K), ia is
an additive isomorphism K → A. Define a multiplication ⊗ on A as follows. If
b = r · a and c = s · a, put b⊗ c := ia(rs). Then ia is an isomorphism of fields
sending H to a subgroup of (A,⊗). �

Recall that a BFC group is a group G such that for some n ∈ N, all conjugacy
classes in G have size at most n. We shall use the following theorem.

Theorem 2.9 [37, Theorem 3.1] Let G be a BFC group. Then
(i) the derived subgroup G′ is finite,
(ii) G has a definable characteristic subgroup H of finite index such that H ′

is a finite subgroup of Z(H).

Proof. For (ii), put H := CG(G′).

Corollary 2.10 Let G be a group such that Th(G) eliminates ∃∞. Then G has
a definable characteristic subgroup N , consisting of the finite conjugacy classes
of G, such that N ′ is finite.

Proof. The set of conjugacy classes is a uniformly definable family of sets, so
there is an upper bound n on the sizes of the finite ones. The union of the finite
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conjugacy classes of G is clearly a characteristic subgroup, and is definable. It
is a BFC group, so Theorem 2.9 is applicable. �

Together with counting arguments, Theorem 2.9 was used in [20] (see also
[34, Theorem 5.1.5]) to prove the following.

Theorem 2.11 Let G ∈ M, with rk(G) = 1. Then G is finite-by-abelian-by-
finite. More precisely, G has a definable finite index characteristic subgroup N ,
contained in the union of the finite conjugacy classes of G, such that N ′ ≤ Z(N)
is finite.

The proof of this yields also the following, noted in [19, Lemma 7.4].

Proposition 2.12 Let G ∈M. Then some g ∈ G\{1} has infinite centraliser.

Lemma 2.13 Let p be a prime, and let A ∈ M be abelian, and have no p-
torsion. Then A is (uniquely) p-divisible.

Proof. Let f : A → A be the group homomorphism x 7→ px. Since A has
no p-torsion, f is injective, so B := f(A) has the same rank as A, so has finite
index in A by Lemma 2.1. For p-divisibility, it suffices to show that A = B. As
f is injective, each element of A will then be uniquely p-divisible.

Suppose |A : B| = n, and write A = Bx1 ∪ . . . ∪ Bxn (a disjoint union),
where x1 = 1. Define g : A→ A by putting g(y) = f−1(yx−1

i ) for y ∈ Bxi (for
i = 1, . . . , n). Then g is a definable n-to-1 surjection A→ A. Since the identity
map A→ A is 1-to-1, it follows by unimodularity that n = 1. �

We record below a result of J.S. Wilson [44], slightly strengthened through
results in the PhD thesis of Ryten.

Proposition 2.14 Let G be a simple pseudofinite group. Then
(i) G is a group of Lie type, possibly twisted, over a pseudofinite field,
(ii) the theory of G (as a pure group) is measurable.

Proof. (i) By the main theorem of [44], G is elementarily equivalent to
an ultraproduct ΠG(q)/U of finite groups G(q) of a fixed Lie type over finite
fields Fq. Furthermore, by the results in Chapter 5 of [39], the groups G(q) are
uniformly bi-interpretable over parameters with Fq (or, in the case of Suzuki
and Ree groups, with structures (Fq, σ) for an appropriate field automorphism
σ). In particular, the theory of G states that there is a field F (or difference
field (F, σ)) and a group of Lie type over F which is definably (in G) isomorphic
to G. Part (i) follows.

(ii) Theorem 1.1.1 of [39] states that any family of finite simple groups of
fixed Lie type is an asymptotic class (a notion introduced in full generality in
[18]). It follows, e.g. by [17, 2.1.10], that any non-principal ultraproduct of such
a family is measurable. �
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Remark 2.15 In the contexts of this paper, a useful example to bear in mind is
that of extraspecial groups. Let p be an odd prime. A p-group P is extraspecial
if P ′ = Z(P ) ∼= Cp and P/Z(P ) is elementary abelian. Extraspecial p-groups
for odd p have exponent p or p2. A finite extraspecial p-group of exponent p
has order p2m+1 for some m > 0, and is determined up to isomorphism by its
order: it is a central product of extraspecial groups of order p3. It was shown
in [21] that extraspecial p-groups of exponent p are ℵ0-categorical. In fact, they
are smoothly approximable, and also measurable of rank 1, since the class of
finite extraspecial p-groups of exponent p (a fixed prime) is a one-dimensional
asymptotic class (see e.g. [34, Proposition 3.11]).

If P is an extraspecial p-group of (odd) exponent p, then P/Z(P ) has the
structure of a vector space over Fp (identified with Z(P )), and the commuta-
tor map to the centre endows it with a symplectic bilinear form. In particu-
lar, if P is countable then (viewed additively) P/Z(P ) has a basis over Fp of
the form {ei, fi : i ∈ I} such that [ei, fj ] = δij ∈ Fp (Kronecker delta) and
[ei, ej ] = [fi, fj ] = 0. If P is countably infinite, it does not have the descending
chain condition on centralisers; for putting I = ω, one has a strict descending
chain P > CP (e1, f1) > CP (e1, e2, f1, f2) > . . . with intersection Z(P ). Thus,
centralisers of elements all have finite index in P , and their intersection is Z(P );
in particular, there is no smallest definable subgroup of ‘bounded’ index.

3 Soluble subgroups

In this section we obtain basic results about soluble subgroups of groups in S, in
particular proving Theorem 1.1 (Propositions 3.2 and 3.3). Note that the first
two results below, and hence also Theorem 1.1(i), do not require the finiteness
of rank assumption.

Lemma 3.1 Let G be an infinite group definable in a supersimple theory T such
that T eq eliminates ∃∞.

(i) Let H ≤ G be an infinite finite-by-abelian subgroup. Then H is contained
in an infinite definable finite-by-abelian subgroup K ≤ G.

(ii) If H is in addition normalised by B ≤ G, then K may be chosen to be
normalised by B.

Proof. (i) Suppose F / H is finite and H/F is abelian. Now let J be a
definable subgroup of G of minimal SU -rank such that H ≤ J and F / J . Such
J exists, as NG(F ) is definable and contains H. For h ∈ H, put h̄ := hF ∈ J/F .
Let CJ(h̄) be the stabiliser of h̄ in the action of J by conjugation on J/F . So
CJ(h̄) ≤ J . Also H/F is abelian, so H ≤ CJ(h̄). As J has minimal rank, |J :
CJ(h̄)| <∞. Of course CJ(h) ⊆ CJ(h̄), and as F is finite, |CJ(h̄) : CJ(h)| <∞.
It follows that |J : CJ(h)| <∞, and so hJ is finite.

Now let L := {j ∈ J : |jJ | < ∞}. Then as ∃∞ is eliminable, L is definable,
with H ≤ L, and L is a BFC group, so by Theorem 2.9, L′ is finite.

(ii) Let J be of minimal SU -rank among definable subgroups of G which
are BFC and contain H; such J exists, by (i). For b ∈ B let Jb := bJb−1.
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Then J := {Jb : b ∈ B} is a family of definable supergroups of H, and for all
b, b′ ∈ B we have |Jb : Jb ∩ Jb′ | <∞, by the minimality of SU(J). Moreover as
∃∞ is eliminated, this index is bounded, and J is a uniformly commensurable
family. So by Theorem 2.5, there is a subgroup K0 of G which is uniformly
commensurable to J , and which is normalised by B. The group K0 is a finite
extension of some group Jb1 ∩ . . . ∩ Jbr , where b1, . . . , br ∈ B. In particular,
K0 is definable, and contains H. Let K be the union of the finite conjugacy
classes of K0. Then K is definable. Since each Jbi is BFC, so is Jb1 ∩ . . .∩ Jbr ,
and hence Jb1 ∩ . . . ∩ Jbr ≤ K. Thus, as H ≤ J and B normalises H, H ≤ K.
As K charK0, K is normalised by B. Finally, as K is a BFC group, it is
finite-by-abelian. �

Proposition 3.2 (i) Let G be an infinite group definable in a supersimple the-
ory T such that T eq eliminates ∃∞, and let S be a soluble subgroup of G. Then
S is contained in a definable soluble subgroup H of G.

(ii) If S is also normalised by B ≤ G, then H can be chosen to be normalised
by B.

Proof. (i) We argue by induction on the derived length d of S. Let S(r) be
the smallest infinite term in the derived series of S, so S(r+1) is finite. We work
in R := NG(S(r+1)), a definable subgroup of G containing S.

The group S(r) is a finite-by-abelian subgroup of R which is normalised
by S, so by Lemma 3.1(ii), it is contained in a definable such group K. Let
Q := NR(K). Then Q is definable, and S ≤ Q. Now S/K is a soluble subgroup
of Q/K of derived length less than d, so there is a definable soluble group H̄
with S/K ≤ H̄ ≤ Q/K. Let H be the preimage of H̄ under the natural map
Q→ Q/K. Then H is a definable soluble subgroup of Q containing S.

(ii) This is a straightforward adaptation of (i). �

Remark. In Proposition 3.2, the group H, obtained as in the proof, has
derived series which has the same number of infinite factors as in the derived
series of S. We do not know if in (i) one can require that S and H have the
same derived length.

Proposition 3.3 Let G ∈ S. Then G has a largest soluble normal subgroup
R(G), and R(G) is definable.

Proof. First note that definability follows from the first assertion by Propo-
sition 3.2 (ii).

To see the first assertion, let S be a definable soluble normal subgroup of G
of maximal rank, and for X ≤ G with S ≤ X write X̄ for X/S. Then if Q is
any soluble normal subgroup of G, then QS/S is finite: indeed, we may suppose
by Proposition 3.2 that Q is definable, so QS is definable, and the result then
follows by maximality of the rank of S. Now work in Ḡ. The union N̄ of the
finite normal subgroups of Ḡ is a definable BFC group, as ∃∞ is definable. By
Theorem 2.9, N̄ has a nilpotent class 2 definable subgroup M̄ of finite index.
Let M be the preimage of M̄ in G. Then M is definable, soluble, and contains
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S. So by maximality of rank it is a finite extension of S. Hence M̄ is finite,
and so is N̄ . Now let R̄ be the product of the finite soluble normal subgroups
of Ḡ. Then R̄ is a subgroup of N̄ and so is finite and soluble, and its preimage
R = R(G) is the largest soluble normal subgroup of G, and is definable. �

Question. Is it true that if G ∈ S then G has a unique largest nilpotent
normal subgroup N and that such N is definable?

The following result, combined with Proposition 3.3, gives some structure
theory for members of S and F . It builds on the results of Section 5 of [20],
where groups with no finite conjugacy classes are considered.

Proposition 3.4 Let G ∈ S. Suppose R(G) = 1. Then
(i) G has just finitely many finite conjugacy classes.
(ii) Any infinite normal subgroup of G contains an infinite definable normal

subgroup of G.
(iii) G has just finitely many minimal normal subgroups, they are all defin-

able, and Soc(G) is definable.
(iv) Any minimal normal subgroup of G is the direct product of finitely many

isomorphic definable simple groups.
(v) If G ∈ F , then the simple groups in (iv) are all finite, or Chevalley

groups (possibly twisted) over a pseudofinite field.

Proof. (i) As ∃∞ is eliminated, the finite conjugacy classes ofG have bounded
size. If M is the union of the finite conjugacy classes, then M is a BFC group
and so, by Theorem 2.9(ii), has a characteristic soluble subgroup of finite index.
If this were infinite, this would contradict the assumption that R(G) = 1.

(ii) Let N be an infinite normal subgroup of G. By (i), N contains an infinite
conjugacy class C of G. By Theorem 2.2, there is a definable normal subgroup
K of G such that K ≤ 〈C〉 and C/K is finite. In particular, K is infinite.

(iii) Definability of the minimal normal subgroups follows from (ii). By (i),
there can be just finitely many finite minimal normal subgroups. By finiteness of
the rank of G, Lemma 2.1, and the definability of minimal normal subgroups, G
also has just finitely many infinite minimal normal subgroups. The definability
of Soc(G) follows immediately.

(iv) Let N be a minimal normal subgroup of G. We may assume that N is
infinite, since any minimal normal subgroup is characteristically simple (i.e. has
no proper non-trivial characteristic subgroups); and it is well-known that any
finite characteristically simple group is a direct product of (isomorphic) simple
groups, which, being finite, are definable. Also, by (ii), N is definable.

We first show that N has no finite N -conjugacy classes. For suppose not.
Then the union of the finite N -conjugacy classes of N is a characteristic sub-
group of N , so normal in G, so, by minimality of N , equals N . Thus, as finite
conjugacy classes have bounded size (by definability of ∃∞), N is a BFC group.
Thus R(N) is infinite, by Theorem 2.9. Since R(N) is characteristic in N , it is
normal in G, contradicting that R(G) = 1.
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By compactness and Theorem 2.2, and the assumption that N is minimal
normal, there is some r > 0 such that for every infinite conjugacy class C of
N , there are ε1, . . . , εs ∈ {1,−1} for some s ≤ r such that Cε1 . . . Cεs is a
subgroup of N . It follows that, if M is a normal subgroup of N , and C is
an infinite conjugacy class of N contained in M , then M contains a definable
normal subgroup of N of the form Cε1 . . . Cεs . Since such normal subgroups
are uniformly definable, and Th(G) does not have the strict order property (as
it is supersimple), there are no infinite chains of such normal subgroups. It
follows that N has a minimal normal subgroup, Q say. By (ii), the group Q will
be definable, and it is infinite by the last paragraph. Since distinct conjugates
of Q are disjoint (by minimality of Q), it follows by finiteness of rank that
N = Qg1 × . . . × Qgt for some t ∈ N and g1, . . . , gt ∈ G. Finally, Q is simple:
for if X is a proper non-trivial normal subgroup of Qg1 say, then as all the Qgi

normalise X, X is normal in N , contrary to the minimality of Q.
(v) This is immediate from Proposition 2.14. �

Note that (ii) of Proposition 3.4 would be false without the assumption that
R(G) = 1. Extraspecial groups (see Remark 2.15) provide a counterexample.

In general, the socle of a group in S may not be definable. An example is
the group Σi∈ωCpi⊕ (Q,+), which has socle Σi∈ωCpi and is an infinite model of
the theory of the set of groups {Σni=1Cpi : n ∈ ω}; here (pi)i∈ω lists the primes.
However, if G ∈ S has no finite conjugacy classes, then Soc(G) is definable, by
[20, Lemma 5.3(2)]. We also have the following strengthening of [20, Lemma
5.2].

Lemma 3.5 Let G ∈ S, and let A be a minimal normal subgroup of G. Then
A is definable.

Proof. We may suppose that A is infinite. Let B be the union of the finite
conjugacy classes of G, a definable normal subgroup of G. Either A ≤ B, or
A ∩B = {1}.

Suppose first that A ≤ B. It follows easily from Theorem 2.9 that A is
abelian, and so we write A additively. For any n > 0, nA is characteristic
in A so normal in G, and it follows that A is elementary abelian or torsion-
free. In fact, A is torsion-free, since otherwise, as sets aG (a ∈ A) are finite,
A would be finite. Now for each n > 0, as nA is normal in G, nA = A, so
A is divisible. Thus, A is a vector space over Q. Let u1 ∈ A \ {0}. Since uG1
is finite and generates A, the vector space has finite dimension. In particular,
uG1 contains a Q-basis {u1, . . . , un} of A, and every element v of uG1 has the
form v = Σni=1αiui, where αi ∈ Q. Let r be the least common multiple of
the denominators of all the elements of form α1 as v ranges through uG1 , and
put u := 2ru1. Then uG generates a normal subgroup of G which is properly
contained in A, contradicting minimality of A.

Thus, we may suppose A∩B = {1}. Let a ∈ A\{1}. Then by Theorem 2.2,
there is a definable normal subgroup N of G with N ≤ 〈aG〉 and aG/N finite.
As aG is infinite, N 6= 1, so by minimality A = N , and A is definable. �
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4 Rank two Groups

In this section we investigate rank 2 groups in M and F . Since the results all
depend on Theorem 2.11 which uses unimodularity, our methods shed no light
on rank 2 groups in S \M. Our results extend those of [20], where it is shown
that any rank 2 infinite ultraproduct of an asymptotic class is soluble-by-finite.
Our eventual purpose, not yet achieved, is to obtain a positive answer to the
following question.

Question 4.1 Is every rank 2 group G ∈M soluble-by-finite?

First, note the following result [20, Lemma 4.6]. In [20] the theory is assumed
to be an S1-theory (which includes an assumption that rank is definable), but
definability of rank plays no role.

Proposition 4.2 Let G ∈ M have rank 2. Then either G has a definable
soluble subgroup of finite index and derived length at most 4, or G has a definable
finite-by-simple subgroup of finite index, so interprets a simple rank 2 group in
M.

In view of Proposition 4.2, we assume in the rest of this section that G
is a simple group in M of rank 2. We obtain partial results, and derive a
contradiction from the additional assumption of pseudofiniteness.

Lemma 4.3 Suppose G ∈M is simple of rank 2. Then G has no finite conju-
gacy classes.

Proof. This is immediate from the simplicity of G and Corollary 2.10. �

Proposition 4.4 Let G ∈M be a simple group of rank 2. Suppose that Ω is a
definable rank 1 set upon which G acts definably and transitively.

(i) For each x ∈ Ω, Gx acts on Ω\{x} with finitely many infinite orbits and
finitely many finite ones.

(ii) There is a unique maximally coarse definable G-congruence on Ω. It
has blocks of finite size, and is given by x ∼ y :⇔ [Gx : Gx ∩ Gy] < ∞ for all
x, y ∈ Ω. It is maximal among all proper G-congruences, and any G-congruence
with finite blocks refines it.

Proof. Claim 1. Let ≈ be any definable G-congruence on Ω. If ≈ is not the
universal congruence on Ω then ≈ has finite blocks.

Proof of Claim. Suppose for a contradiction that there is an infinite ≈-class.
Then by transitivity of the action of G, all the ≈-classes must be infinite. Thus
as ≈ is definable, and Ω has rank 1, there can be only finitely many classes. So
we have found a finite set (the set of ≈-classes), on which G acts transitively.
Then the kernel of this action is a nontrivial normal subgroup of G, so by
simplicity of G there is in fact only one ≈-class, yielding the claim.

Consider now the relation x ∼ y :⇔ [Gx : Gx ∩ Gy] < ∞. By Lemma 2.6,
this is a definable G-congruence. Denote the ∼-class of x ∈ Ω by x̃.
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By the orbit-stabilizer theorem

|OrbGx(y)| <∞⇔ [Gx : Gx ∩Gy] <∞⇔ x ∼ y

Claim 2. Each ∼-class is finite.
Proof of Claim. Suppose not. Then by Claim 1, Ω is a single ∼-class.

It follows, as ∃∞ is definable, that the groups Ggx (for x ∈ Ω) are uniformly
commensurable, so by Theorem 2.5 there is definable N / G commensurable
with them. As rk(Gx) = 1, rk(N) = 1, contradicting simplicity of G.

To see (i), note that, by the claims, x̃ is finite, so there are finitely many
finite Gx-orbits. Since Ω has rank 1, there can only be finitely many infinite
orbits, yielding (i).

For (ii), let ≈ be any definable non-universal G-congruence on Ω. Then
by Claim 1, the ≈-classes are finite, so if x ≈ y then |Gx : Gxy| < ∞, so
x ∼ y. Thus, the action of G on Ω/ ∼ is definably primitive. Hence, by
Lemma 2.7, as rk(G) > rk(Ω/ ∼), this action is primitive, so ∼ is a maximal
proper G-congruence (among not necessarily definable ones). Finally, if ≈ is
any G-congruence with finite blocks, then again if x ≈ y then |Gx : Gxy| <∞,
so x ∼ y. �

Corollary 4.5 Let G ∈M be a simple rank 2 group, and C be a rank 1 subgroup
of G. Then there is a maximal subgroup N of G which contains C, has rank 1,
and is definable. Furthermore, every definable rank 1 subgroup of G containing
C is contained in N .

Proof. Let C ≤ G be of rank 1. Then the left coset space X := Cos(G : C) has
rank 1, and G acts on it by left multiplication. Under this action, the stabiliser
GC is C. So let ∼ be the unique maximal definable G-congruence on Cos(G : C)
defined in Proposition 4.4, let [aC] denote the ∼-class of aC ∈ X, and let N be
the stabilizer of [C] under the action of G on X/ ∼. Clearly C ≤ N . Notice
that G acts definably primitively on X/ ∼, so there is no definable H with
N < H < G. Hence, by Lemma 2.7, N is maximal in G. Since X/ ∼ is infinite,
rk(N) < 2, so rk(N) = 1.

For the second assertion, suppose that also C ≤ H where H is some rank 1
subgroup of G. Now H acts transitively by conjugation on {hCh−1 : h ∈ H},
and since C is of finite index in H, the orbit-stabilizer theorem shows that this
family is finite. Therefore the kernel of this action is infinite and is contained
in every hCh−1. Thus H-conjugates of C have pairwise-infinite intersection, so
are commensurable. Since hCh−1 is the stabiliser of the element hC of X (in
the G-action on X), it follows that for any h1, h2 ∈ H we have h1C ∼ h2C, and
Cos(H : C) ⊆ [C]. Thus H (in the action on X/ ∼) fixes [C], so H ≤ N .�

Lemma 4.6 Let G ∈M be a simple rank 2 group, and N be a rank 1 maximal
definable subgroup of G. Then

(i) Conj(N) := {aNa−1 : a ∈ G} has rank 1.
(ii) Any two non-identical conjugates aNa−1 and bNb−1 have finite inter-

section.
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(iii) Each x ∈ G\{1} appears in only finitely many conjugates of N .
(iv) N has finite intersection with each rank 1 conjugacy class.

Proof. (i) G acts on Conj(N) by conjugation. Now aNa−1 = N ⇔ a ∈ N ,
since N is maximal and has rank 1, but is not normal, and so is self-normalising.
This shows that there is a definable bijection between the coset space Cos(G : N)
and Conj(N). As rk(N) = 1, also Cos(G : N) has rank 1, and hence so does
Conj(N).

(ii) For any a ∈ G, aNa−1 is maximal in G and has rank 1. But if H =
bNb−1 ∩ aNa−1 is infinite, then by Corollary 4.5 H lies in a unique definable
rank 1 maximal subgroup of G. So H = bNb−1 = aNa−1.

(iii) Suppose this is false. Let

S := {x ∈ G \ {1} : {Ng : g ∈ G, x ∈ Ng} is infinite}.

Then S is a union of conjugacy classes, and is non-empty, so as G has no finite
conjugacy classes, S is infinite (and definable).

Consider the definable set Y ⊆ Conj(N)× Conj(N)×G where

Y = {(xNx−1, yNy−1, z) : x, y ∈ G, z ∈ xNx−1 ∩ yNy−1}

We compute rk(Y ). By considering the first two coordinates first, and using
(ii), rk(Y ) = 2. On the other hand, by considering the third coordinate first,
and choosing z ∈ S, we have rk(Y ) = 3. This contradiction proves (iii).

(iv) Suppose that N has infinite intersection with some rank 1 conjugacy
class C. This holds also for each conjugate of N . Since there are infinitely
many conjugates of N , and any two have finite intersection, this contradicts
that C has rank 1 (working e.g. with the definition of S1 rank). �

Definition 4.7 In G, we call elements with conjugacy class of rank at most 1
good, and those with rank 2 conjugacy class bad.

Note that bad elements have centraliser of finite bounded size, so the set of
bad elements is definable, so ‘good’ is also definable.

Lemma 4.8 Let G ∈ M be simple of rank 2. If x ∈ G is good then x lies in a
unique maximal rank 1 subgroup of G.

Proof. Since x is good, rk(CG(x)) = 1. So let N be the unique maximal
definable rank 1 group containing CG(x) (see Corollary 4.5). Now suppose M
is another maximal rank 1 subgroup containing x. Consider the following set of
conjugates of M :

C = {aMa−1 : a ∈ CG(x)}

Now C is a collection of maximal rank one subgroups each of which contains
the element x. But by Lemma 4.6 (iii) C must be finite. Let J be the kernel of
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the action by conjugation of CG(x) on C. Then J is a subgroup of finite index
in CG(x). Also,

∀j ∈ J jMj−1 = M

Since M is self-normalising, J ⊆M . But J has rank 1 so lies in a unique max-
imal rank 1 subgroup of G. Since J ⊆ N we deduce N = M . �

Lemma 4.9 Let G ∈M be simple of rank 2. Suppose N is a maximal definable
rank one subgroup of G. Then the set of good elements which lie in N is a
definable normal subgroup of N of finite index.

Proof. By Theorem 2.11, the union of the finite N -conjugacy classes in N
is an infinite definable characteristic subgroup of N . Thus, it suffices to show
that if x ∈ N , then x is good if and only if xN is finite. For this, note that
rk(Conj(N)) = 1 and

xG =
⋃

aNa−1∈Conj(N)

axNa−1

Now if x ∈ N is good, then CG(x) ≤ N by Lemma 4.8, and it follows that
rk(CG(x)) = rk(N) = 1 and hence xN is finite. On the other hand, if xN is
finite, then as rk(Conj(N)) = 1 we clearly have rk(xG) = 1. �

By Lemma 4.9 and Corollary 4.5, if G ∈ M is simple of rank 2 and M is
any rank 1 definable subgroup, then the set of all good elements of M forms a
definable subgroup of M of finite index. We denote the latter by Mo.

Lemma 4.10 Let G ∈M be simple of rank 2. Then G contains infinitely many
rank 1 conjugacy classes.

Proof. First, by Proposition 2.12, there is non-identity x ∈ G with CG(x)
infinite, and so rk(xG) ≤ 1. Thus, by Lemma 4.3, G has a rank 1 conjugacy
class, namely xG. Since rk(CG(x)) = 1, G has a rank 1 maximal subgroup, N
say.

Suppose that G has just finitely many conjugacy classes of good elements.
Then as N is infinite, No has infinite intersection with some conjugacy class C
of good elements. This contradicts Lemma 4.6(iv).

�

Lemma 4.11 Let G ∈M be simple of rank 2. Then the collection of maximal
rank 1 subgroups divides up into finitely many disjoint families of the form
Conj(N).

Proof. Suppose {Ni : i ∈ I} is a set of maximal definable rank 1 subgroups,
none of which is conjugate to any of the others. We claim that the Ni are
uniformly definable, i.e. that there are finitely many formulas ϕi(x, ȳi) such
that each Ni has the form ϕj(G, āj) for some āj ∈ Gl(ȳj). To see this, observe
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that as the set of good elements is definable, the family S of rank 1 groups
{CG(x) : x good} is uniformly definable. For every maximal rank one group N ,
there is C ∈ S with C ≤ N (see the proof of Lemma 4.9). The actions of G
on the coset spaces Cos(G : C) are uniformly definable. Since ∃∞ is definable,
the maximal equivalence relation ∼ on Cos(G : C) with finite classes is also
uniformly definable (as C varies). So N is uniformly defined as the stabiliser of
the ∼-class of C in the action of G on Cos(G : C); see Corollary 4.5.

Now {Conj(Ni) : i ∈ I} is a collection of disjoint families of conjugate
subgroups. For any i ∈ I, rk(

⋃
a∈G aN

o
i a
−1) = 2 by Lemma 4.6(i), (ii). Also

for any i, j ∈ I such that i 6= j we have( ⋃
a∈G

aNo
i a
−1
)
∩
( ⋃
a∈G

aNo
j a
−1
)

= {1}

by Lemma 4.8. Since rk(G) = 2, it follows by rank considerations and the uni-
form definability of the Ni that | I |<∞. �

Lemma 4.12 Let G ∈M be simple of rank 2. Then there is a definable rank 1
subgroup H of G which consists solely of good elements, such that in the action
of G by left multiplication on the coset space Cos(G : H), all the bad elements
of G act fixed-point-freely.

Proof. There is at least one good element by 4.10, so there is at least one
maximal definable rank 1 group N , and we may put H := No.

Suppose now that a ∈ G and abH = bH. So b−1ab ∈ H and a ∈ bHb−1.
But then a is conjugate to a good element, so is good. �

Proposition 4.13 Let G ∈ M be simple of rank 2. Then G contains at least
one rank 2 conjugacy class.

Proof. Suppose not. Then all non-identity conjugacy classes have rank 1.
We may suppose that G is ω-saturated. For elementary extensions will preserve
simplicity of G by Proposition 4.2, and existence of rank 2 conjugacy classes is
equivalent to existence of elements with finite centraliser, which is first order
expressible.

Let x ∈ G\{1}. Then as G is simple, xG generates the whole of G. Moreover,
by compactness and ω-saturation, it does so in finitely many steps. Therefore
for some minimal n ≥ 1 there are ε1 . . . , εn+1 ∈ {−1, 1} and Y :=

∏n
i=1(xεi)G

such that rk(Y ) = 1 and rk(Y · (xεn+1)G) = 2. Without loss of generality (by
exchanging x with x−1 if necessary) we may assume that εn+1 = 1.

Notice that Y is closed under conjugation, and is therefore a disjoint union
of finitely many rank one conjugacy classes. Similarly Y · xG is a union of
conjugacy classes, say Y · xG =

⋃
{Di : i ∈ I}. For each i ∈ I define Ei := {y ∈

Y : yx ∈ Di}. Note that if y ∈ Ei and b ∈ CG(x) then ybx = ybxb = (yx)b ∈ Di,
so yCG(x) ⊆ Ei.
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Now each Ei is non-empty. For suppose y′ ·gxg−1 ∈ Di, where y′ ∈ Y . Then
conjugating by g we find that g−1y′g · x ∈ Di and therefore g−1y′g ∈ Ei.

We claim that for all but finitely many y ∈ Y we have: if y ∈ Ei then Ei is
infinite. Indeed, suppose that U ⊆ Y is a conjugacy class. Then for only finitely
many y ∈ U may we have rk(CG(x)∩CG(y)) = 1, by Proposition 4.4 applied to
the action by conjugation of G on U . Thus for cofinitely many y ∈ U we have
that CG(x)∩CG(y) is finite, and for all such y ∈ U , if y ∈ Ei then yCG(x) ⊆ Ei
(as noted above), so Ei is infinite. Recalling that there are only finitely many
such U ⊆ Y yields the claim.

Hence as Y has rank 1 and the Ei partition Y , it follows that I must be
finite. But then as Y ·xG has rank 2, it follows that at least one of the conjugacy
classes Di must have rank 2, a contradicting our assumption. �

The following result, a strengthening of the last proposition but under a
stronger hypothesis, is not used elsewhere in the paper. It seems to be the only
place in this section where we need measurability, rather than just unimodularity
or pseudofiniteness.

Proposition 4.14 Assume that G ∈ M is measurable simple of rank 2. Let
N be a rank one maximal subgroup of G. Then N contains a bad element.

Proof. Suppose for a contradiction that all the elements of N are good. We
shall write µ(X) for the measure (in the sense of measurable structures, as in
[34]) of a definable set X. We may normalise to ensure µ(G) = 1.

We show that under these assumptions, the conjugates of N cover G, con-
tradicting the last result. Consider the definable map

ϕ : Cos(G : N) 7→ Conj(N) where aN 7→ aNa−1

Since N is self-normalising, ϕ is bijective. It follows that µ(Cos(G : N)) =
µ(Conj(N)).

Now let X :=
⋃
a∈G aNa

−1. Then

X\{1} =
⋃
a∈G

(aNa−1\{1})

and by 4.8, as all elements of N are good, the sets on the right are equal or
disjoint. So by elementary properties of rank and measure we have dim(X) = 2
and

µ(X) = µ(X\{1}) = µ(N\{1}) · µ(Conj(N))
= µ(N) · µ(Conj(N))
= µ(N) · µ(Cos(G : N))
= 1

as µ(G) = 1 by our assumption.
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Suppose now that y ∈ G\X. Then y cannot be bad, as then yG would
be a rank two set disjoint from X which is impossible: indeed, we would have
µ(yG) > 0, µ(X) = µ(G), and µ(yG)+µ(X) ≤ µ(G). This shows that all points
of G are good, which is impossible by 4.13 above. �

We now answer Question 4.1 assuming G ∈ F . We do not use CFSG.

Lemma 4.15 Let G ∈ F be simple of rank 2. Then any two maximal rank 1
definable subgroups of G are conjugate.

Proof. Suppose that G has non-conjugate maximal rank 1 subgroups N1 and
N2. By Lemma 2.7, N1 and N2 are abstractly maximal, and also are uniformly
maximal. Suppose that ϕi(x, āi) defines Ni for i = 1, 2. It follows that there is
a sentence σ in Th(G) which expresses that there are subgroups ϕi(G, āi) (for
i = 1, 2) which are maximal and non-conjugate. We may suppose that G is a
nonprincipal ultraproduct Πj∈JGj/U .

Let Ci := No
i , for i = 1, 2. Then Ni = NG(Ci). Let x ∈ C1\{1}. Then as

CG(x) has rank 1 and x is good so lies in at most one maximal rank 1 group
(Lemma 4.8), it follows that CG(x) ≤ N1, and moreover |C1 : C1 ∩ CG(x)| is
finite.

Let G act on xG by conjugation, and let X := xG/ ∼, where ∼ is the
fundamental congruence: x1 ∼ x2 :⇔ CG(x1) ∩ CG(x2) is infinite. We examine
the action of the Ci on X.

Claim 1. Every orbit of C2 on X is regular.
Proof of Claim. Suppose h ∈ G, and g ∈ C2, and g(hxh−1)g−1 ∼ hxh−1,

that is, conjugation by g fixes xh/ ∼. Then h−1ghxh−1g−1h ∼ x, so CG(xh
−1gh)∩

CG(x) is infinite. Thus CG(xh
−1gh) ∩ C1, and (CG(x))h

−1gh ∩ C1 and so also
Ch
−1gh

1 ∩C1 are all infinite. It follows that Nh−1gh
1 = N1, as otherwise Ch

−1gh
1 ∩

C1 is a rank 1 subgroup of two distinct maximal rank one subgroups, contrary
to Corollary 4.5. Thus, h−1gh ∈ N1, so g ∈ hN1h

−1. Since N1 and N2 are
non-conjugate, it follows that g = 1.

Claim 2. There is one orbit of C1 on X of size 1, namely the ∼-class of x,
and the rest are regular.

Proof of Claim. First note that if g ∈ C1 then CG(x)∩CG(xg) is infinite, so
x ∼ xg; that is, x/ ∼ is a singleton orbit of C1.

Arguing as in Claim 1, if h ∈ G, and g ∈ C1 with g(hxh−1)g−1 ∼ hxh−1,
then g ∈ Nh

1 ∩N1. Now there are 2 cases:
(i) hN1h

−1 = N1, and as N1 is self-normalising, h ∈ N1, in which case
hC1h

−1 = C1, and thus, as CG(x) and hCG(x)h−1 are both commensurable
with C1, we have that hCG(x)h−1 ∩ CG(x) is infinite, and so hxh−1 ∼ x.

(ii) hN1h
−1 6= N1, in which case g = 1 by Lemma 4.8.

By Los’s Theorem, for ultrafilter-many j ∈ J the sentence σ holds, with
respect to the groups N (j)

i := ϕi(G(j), ā
(j)
i ) (for i = 1, 2, and for some parame-

ters ā(j)
i from G(j)). We drop the superscript j, so work with a finite group G,
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and non-conjugate maximal subgroups N1, N2. Let Ci be as above (i.e. defined
by the same formula defining it in the ultraproduct), with Ni = NG(Ci), and
assume j ∈ J is chosen that Claims 1 and 2 now hold in this finite situation,
where x ∈ C1 \ {1} and X := xG.

Putting the claims together, there are fixed (on an ultrafilter set) strictly
positive integers a1 and b1, where |X| = a1|C2| = b1|C1| + 1. Similarly there
are a2 and b2 where a2|C1| = b2|C2| + 1. Hence a1a2|C2| = b1a2|C1| + a2,
and b1a2|C1| = b1b2|C2| + b1, and so a1a2|C2| = b1b2|C2| + b1 + a2, and so
|C2| = b1+a2

a1a2−b1b2 (note that a1a2 6= b1b2, as otherwise b1 + a2 = 0, contradicting
that they are strictly positive). But this is a contradiction, as a1, a2, b1, b2 are
fixed integers, and |C2| can be made arbitrarily large. �

The following theorem completes the proof of Theorem 1.2.

Theorem 4.16 Let G ∈ F have rank 2. Then G has a definable soluble sub-
group of finite index.

Proof. We may suppose that G is an ultraproduct Πj∈JGj/U of finite groups.
In addition we may suppose by Proposition 4.2 that G is simple.

By the analysis in this section, we may also suppose that G has finitely
many (definable) rank 2 conjugacy classes, and infinitely many rank 1 classes.
Also, by Lemma 4.15, all maximal rank 1 definable subgroups are conjugate. In
particular, maximal rank 1 definable subgroups of G are uniformly definable,
say by the formulas ϕ(x, ȳ).

By Lemma 2.7, if C is a maximal rank 1 subgroup of G, then C is uni-
formly maximal. That is, there is t > 0 such that if g, h ∈ G \ C, then
h = c1g

±1c2g
±1 . . . ct, where c1, . . . , ct ∈ C. Thus, there is a formula ψϕ(ȳ)

expressing that the group defined by ϕ(x, ȳ) is maximal, via uniform maxi-
mality with parameter t. In particular, for any group H and ā from H, if
H |= ψϕ(ā) then ϕ(H, ā) is a maximal subgroup of H. Let ϕ∗(x, ȳ) be the
formula ϕ(x, ȳ) ∧ ψϕ(ȳ).

There is n such that if x ∈ G \ {1} and |CG(x)| > n, then CG(x) is infinite.
Since G is simple, it follows that for such x, CG(x) has rank 1, so is contained
in a maximal rank 1 definable subgroup of G. There is a sentence σ which
expresses this: namely:

∀x((x 6= 1 ∧ |CG(x)| > n)→ ∃z̄∀y([x, y] = 1→ ϕ∗(y, z̄))).

We may suppose that σ holds in all Gj . We may also suppose that for any Gj
and tuples ā, b̄ from Gj such that Gj |= ψϕ(ā)∧ ψϕ(b̄), the maximal subgroups
ϕ(Gj , ā) and ϕ(Gj , b̄) are conjugate in Gj , since the corresponding assertion is
true of G and is first order expressible.

Let P be a Sylow p-subgroup of some Gj . Then there is x ∈ Z(P ) \ {1}.
Thus, if |P | > n, then as P ≤ CGj (x) and Gj |= σ, there is some ā in Gj such
that P ⊆ ϕ∗(Gj , ā). Let Cj be the subgroup of Gj defined by ϕ∗(x, ā). Then
|P | divides |Cj |. Suppose |Gj | = pa1

1 . . . par
r , the prime power decomposition.

Then, by the conjugacy of ϕ∗-definable subgroups, for all i such that pai
i > n,
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it follows that pai
i divides |Cj |. Hence, |Gj : Cj | ≤ nn. Since this holds for all i,

it follows that |G : C| ≤ nn. This contradicts that rk(C) = 1. �

We have not managed to prove that there is no simple rank 2 group G ∈M.
The proof of Theorem 2.11 suggests that that there might be one argument to
handle the case when G has an involution, and another to handle the involution-
free case. We conclude this section with some remarks on the first case. The
goal has been to eliminate involutions using arguments developed in [4, 16], but
this has not been achieved.

First we recall an easy fact:

Fact 4.17 Let G be a group. Then every x ∈ G lies in a definable abelian
subgroup of G.

Proof. It suffices to take the double-centralizer CG(CG(x)) of x. �

Lemma 4.18 Let G ∈ M. Suppose that i, j ∈ G are involutions. Let x = ij,
and suppose that x 6= 1. For any definable abelian group A such that x ∈ A,
either there is an involution k ∈ A such that x commutes with both i and j, or
i and j are conjugate by an element of A.

Proof. Let A be a definable abelian subgroup of G with x ∈ A. Let y ∈ G
be an involution and let By = {a ∈ A : yay = a−1}. Notice this is a definable
subgroup of A. Definability is clear. For closure under inversion, suppose a ∈
By. Then ya−1y · yay = 1 so ya−1y = (yay)−1 = (a−1)−1 = a. To see closure
under multiplication, suppose a1, a2 ∈ By. Then ya1a2y = ya1y ·ya2y = a−1

1 a−1
2

and the latter equals a−1
2 a−1

1 by commutativity of A.
Now notice that ixi = i · ij · i = ji = x−1 and jxj = j · ij · j = ji = x−1

and so x ∈ Bi ∩ Bj , and in particular B := Bi ∩ Bj is a non-trivial definable
subgroup of A.

If B contains an involution k, then iki = k−1 = k and also jkj = k, so k
commutes with both i and j. Otherwise B has no involutions. It follows by
Lemma 2.13 that each element x of B has a unique square root y in B. Now
we have y−1iy = iiy−1iy = i(iy−1i)y = iy2 = ix = j. �

Lemma 4.19 Let G ∈M be simple of rank 2. Then G does not have a rank 2
conjugacy class of involutions.

Proof. Suppose such a conjugacy class gG exists. We fix g and consider the
set Xg := {gh : h ∈ gG ∧ h does not commute with g}. Then rk(Xg) = 2,
since rk(gG) = 2, and CG(g) is finite.

By Lemma 4.8, if x is good then there is a unique maximal definable rank 1
subgroup containing x, denoted by Nx.

Let Yg := {gh ∈ Xg : gh is good}, and Sg := {Ngh : gh ∈ Yg}. Suppose
for a contradiction that rk(Yg) = 2. Then rk(Sg) = 1, by Lemmas 4.6(i) and
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4.11. For each gh ∈ Yg we have g · gh · g−1 = g · gh · g = hg = (gh)−1. Now
Ngh = N(gh)−1 so it follows by Lemma 4.8 that gNghg−1 = Ngh. But Ngh is
self-normalising and so g ∈ Ngh. Thus g lies in every element of Sg. Since,
by Lemma 4.11 there are only finitely many distinct sets Conj(N) for maximal
definable rank 1 groups N , it follows that Sg contains some group N and a rank
one set of its conjugates. But then g lies in all these conjugate subgroups, which
contradicts Lemma 4.6.

So now for gi ∈ gG we may consider the set S2(gi) = {x : gixgi = x−1 ∧
rk(xG) = 2}. Then from above rk(Ygi

) = 1, so rk(Xgi
\ Ygi

) = 2. For any
gih ∈ Xgi

\Ygi
we have that rk((gih)G) = 2, and that gi(gih)gi = hgi = (gih)−1,

and so gih ∈ S2(gi). So rk(S2(gi)) = 2.
Let k be the maximal size of the centralizer of an element of a rank two

conjugacy class. Suppose x ∈
⋂k+2
i=1 S2(gi) for elements g1, . . . , gk+2 ∈ gG. Then

for each i ≤ k+1 we have gigk+2xgk+2gi = x, which contradicts the maximality
of k. Thus {S2(gi) : gi ∈ gG} is an infinite, (k + 2)-inconsistent family of rank
2 definable sets, which contradicts the assumption that rk(G) = 2. �

Proposition 4.20 Let G ∈M be simple of rank 2. If there are any involutions
then there is exactly one conjugacy class of involutions, and this class has rank
1.

Proof. Suppose there are two distinct conjugacy classes of involutions, gG

and hG, say. We know from 4.18 that for every x ∈ gG and every y ∈ hG, x and
y both commute with a third involution, call it zxy. Now by Lemma 4.19 zxy
must have rank 1 conjugacy class. So zxy is an element of a unique maximal
definable rank 1 group Nzxy

. Since zxy = xzxyx
−1 ∈ xNzxy

x−1 it follows that
Nzxy = xNzxyx

−1. But then by the self-normalization of Nzxy it follows that
x ∈ Nzxy . So Nx = Nzxy . Similarly, Ny = Nzxy , so Nx = Ny. But this was for
arbitrary x ∈ gG and y ∈ hG. Fixing x and picking two distinct y1, y2 ∈ hG, we
may deduce that Ny1 = Ny2 = N , say. Thus N , and hence any conjugate of N ,
contains hG, which contradicts Lemma 4.6(iv). �

The techniques developed in [4, 16] (the ‘Borovik-Cartan decomposition’ –
see also [13, Section 7]) take the analysis further when there are involutions.
It can be shown that if G ∈ M is simple of rank 2 and i is an involution of
G, then each right coset of CG(i) (apart from finitely many) contains exactly
one involution, of the form i(igi)−

1
2 ; each such coset also contains exactly one

non-involutory element inverted by i, namely (igi)−
1
2 (a bad element of odd

order). Analogous problems are also treated, slightly differently, in [38].

5 Groups acting on a rank one set

Our main goal in this section is to prove the following theorem (Theorem 1.3 of
the Introduction).
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Theorem 5.1 Let (X,G) ∈ F be a definably primitive permutation group, and
suppose that rk(X) = 1. Let S = Soc(G). Then one of the following holds.

(i) rk(G) = 1, and S is divisible torsion-free abelian or elementary abelian,
has finite index in G, and acts regularly on X.

(ii) rk(G) = 2. Here S is abelian so regular and identified with X. There is
an interpretable pseudofinite field F with additive group X, and G is a subgroup
of AGL1(F ) of finite index, with the natural action.

(iii) rk(G) = 3. There is an interpretable pseudofinite field F , S = PSL2(F ),
PSL2(F ) ≤ G ≤ PΓL2(F ), and G has the natural action on PG1(F ).

Theorem 5.1 follows from Propositions 5.3, 5.11, and 5.12.
The theorem clearly has implications without the definable primitivity as-

sumption. For example, just assuming transitivity, as rk(X) = 1 any definable
G-congruence has finite classes, or finitely many classes. Without definable
primitivity, there is no bound on rk(G): for example, PSL2(F )n (F pseudofi-
nite) has rank 3n and acts transitively on the disjoint union of n copies of
PG1(F ), which has rank 1.

5.1 Preliminaries for Theorem 5.1

We begin with a standard observation.

Lemma 5.2 Let (X,G) ∈ S be a definably primitive permutation group, and
let A be a non-trivial definable abelian normal subgroup of G. Then

(i) A acts regularly on X, and has no proper non-trivial definable character-
istic subgroups.

(ii) A is an elementary abelian p-group for some prime p or a torsion-free
divisible abelian group, so (written additively) may be viewed as a vector space
over a field F (which is Fp or Q).

(iii) If we identify A with X (by first identifying 0 ∈ A with some chosen
x ∈ X) then we may identify (X,G) with (A,AG0) where G0 is the stabiliser of
0 ∈ A. There are no definable proper non-trivial FG0-submodules of A.

Proof. (i) As G is definably primitive, A is transitive on X (for the orbits
of A are the classes of a definable G-congruence). Thus A is regular on X, as
A is abelian. If A had a proper non-trivial definable characteristic subgroup
B, then its orbits would be the blocks of a proper non-trivial G-congruence,
contradicting definable primitivity.

(ii) This follows easily from (i), as A is abelian and ‘definably characteristi-
cally simple’: for any n ∈ N, the group nA equals {0} or A.

(iii) Again this is standard, and elementary. �

We first handle the (easy) case when rk(G) = 1. The following proposition
yields Theorem 5.1(i). Here, no pseudofiniteness assumption is needed.

Proposition 5.3 Assume (X,G) ∈ M is a definably primitive permutation
group with rk(X) = rk(G) = 1. Then G has a definable normal subgroup A of
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finite index which is divisible torsion-free abelian or elementary abelian and acts
regularly on X. If G0 denotes the stabiliser in G of 0 ∈ A, and A is viewed as a
vector space over a prime field, then G0 ≤ GL(A) is finite and irreducible, and
G = AG0, so that if X is identified with A as in Lemma 5.2, then G acts on A
as an affine group (A by translation, G0 by conjugation).

Proof. By Theorem 2.9, G has a definable non-trivial abelian normal sub-
group A. By Lemma 5.2, A acts regularly on X, so rk(A) = 1 and |G : A| <∞.
The remaining assertions also follow from Lemma 5.2. �

Remark 5.4 We give an example interpretable in pseudofinite fields where
G 6= A. Let K be a pseudo-finite field of characteristic 0, and denote by K+

its additive group, and K× its multiplicative group. Let T ≤ K× be exactly
T = {±1}. Let G = K+T , where T acts on K+ by conjugation, and view G
as a subgroup of AGL1(K) acting on K. Then G and K both have rank one.
Here |T | = 2 but T is still definably maximal in G. To see the latter, note
that if T were not definably maximal then G would be definably imprimitive,
so there would be a proper non-trivial T -invariant definable subgroup of K+.
This would be infinite and of infinite index (as K is of characteristic 0 so K+ is
divisible) but the latter is impossible as rk(K+) = 1.

Next, we collect some general facts about the case when rk(G) > 1. Note
that in this case rk(G) > rk(X), so by Lemma 2.7, definable primitivity of
(X,G) ∈M implies primitivity. This will be used without explicit mention.

Lemma 5.5 Assume (X,G) ∈ S is a definably primitive permutation group
with rk(G) > rk(X) = 1. Let x ∈ X. Then Gx has finitely many orbits on
X \ {x}, all of which are infinite.

Proof. Define ∼ on X, putting x ∼ y if and only if |Gx : Gxy| < ∞. By
Lemma 2.6, ∼ is a definable G-congruence. If all ∼-classes are singletons, then
each Gx-orbit on X \ {x} is infinite, so as rk(X) = 1 there are finitely many
such orbits. So suppose for a contradiction that ∼ is non-trivial. By definable
primitivity, ∼ is the universal congruence. Hence, as ∃∞ is definable, there is
n ∈ N such that |Gx : Gxy| < n for all distinct x, y ∈ X. It follows that the
conjugates ofGx are commensurable, so by Schlichting’s Theorem (Theorem 2.5)
there is N / G commensurable with Gx. Since Gx is infinite, so is N , so since
G is primitive on X (by Lemma 2.7), N is transitive. This contradicts that
|N : N ∩Gx| is finite and N ∩Gx fixes x. (This argument is essentially in [20,
Section 5].) �

Remark 5.6 In [31, Section 7] there is a description, which is close to a classifi-
cation, of primitive ultraproducts of finite permutation groups. It is pointed out
there that if (X,G) is an ultraproduct of finite primitive permutation groups
and G has finitely many orbits on X2, then (X,G) is primitive, so satisfies the
description in [31]. In fact, suppose that (X,G) is any definably primitive per-
mutation group in F with rk(G) > rk(X). Then (X,G) has an ω-saturated ele-
mentary extension (X∗, G∗) with the same properties. By Lemma 2.7, (X∗, G∗)
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is primitive. Thus, it satisfies the structure theory given in [31, Section 7]. We
use this in Section 5.3.

Lemma 5.7 Let (X,G) ∈ S be a definably primitive permutation group with
rk(G) > rk(X) > 0. Then

(i) G has no finite conjugacy classes;
(ii) Soc(G) is definable.

Proof. (i) Suppose there is a non-trivial finite conjugacy class. Then G has
a definable characteristic subgroup N consisting of the finite conjugacy classes.
By primitivity, N must act transitively on X. As N is a BFC group, N ′ / G
is a finite abelian group and so by primitivity it must be the identity. So N is
abelian and acts transitively and faithfully on X, and hence regularly.

Let (X∗, G∗, N∗) be an ℵ1-saturated elementary extension of (X,G,N).
Then G∗ acts definably primitively on X∗, and hence primitively by Lemma 2.7.
Let x ∈ N∗. Then xG

∗
is finite, so 〈xG∗〉 is a countable normal subgroup of G∗

contained in N∗. Again, by saturation X∗ is uncountable. So 〈xG∗〉 cannot act
transitively on X∗, which contradicts the primitivity of (X∗, G∗).

(ii) This is immediate from (i) and [20, Lemma 5.3(2)]. �

Lemma 5.8 Let (X,G) ∈ S be a non-principal ultraproduct of finite permuta-
tion groups of the form (X,G) =

∏
j∈J(Xj , Gj)

/
U , with rk(G) > rk(X).

(i) The permutation group (X,G) is primitive if and only if the permutation
group (Xj , Gj) is primitive for ultrafilter-many j ∈ J .

(ii) Suppose (X,G) is primitive. Let S(x) be a formula (guaranteed by
Lemma 5.7) defining the socle of G. Then for ultrafilter-many j ∈ J the formula
S(x) defines the socle in Gj.

Proof. i) ⇒ If (Xj , Gj) is imprimitive for ultrafilter-many j, then the ultra-
product of the proper non-trivial Gj-congruences is a proper G-congruence on
X.
⇐ If ultrafilter-many of the (Xj , Gj) are primitive, then (X,G) is definably

primitive, and hence primitive by Lemma 2.7.
(ii) First observe that, by the proof of the O’Nan-Scott Theorem (see e.g. [15,

Theorem 4.3B]), if (Y,H) is a finite primitive permutation group, then either H
has a unique minimal normal subgroup, or Soc(H) is the direct product of the
two minimal normal subgroups of H. In the latter case the two minimal normal
subgroups of H both act regularly on Y .

By Lemma 5.7 and [20, Lemma 5.3(2)], Soc(G) is the direct product of
finitely many minimal normal subgroupsN1, . . . , Nt, each definable (by Lemma 3.5)
by a formula Ni(x). There is a sentence in Th((X,G)) expressing that S(G) =
N1(G)× . . .×Nt(G).

By (i), we may suppose that each (Xj , Gj) is primitive. For ultrafilter-many
j the formula S(x) defines a normal subgroup of Gj contained in S(Gj). For
each i = 1, . . . , t and for ultrafilter-many j, the formula Ni(x) defines a normal
subgroup of Gj , and indeed for ultrafilter many j this is a minimal normal sub-
group of Gj , since otherwise an ultraproduct of smaller normal subgroups will
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be a normal subgroup of G properly contained in Ni. Also, for ultrafilter-many
j we have N1(Gj) × . . . ×Nt(Gj) = S(Gj), since this is first order expressible.
Thus, for ultrafilter-many j, S(Gj) is a normal subgroup of Gj contained in
Soc(Gj), and (by the first paragraph) t ≤ 2.

It remains to check that, for ultrafilter-many j, the containment S(Gj) ≤
Soc(Gj) is not proper, so suppose that it is. Thus, we may suppose that for
each j, Gj has a minimal normal subgroup Mj disjoint from S(Gj). In this case,
by the first paragraph, t = 1. Also, by the first paragraph, Mj acts regularly
on Xj , so the ultraproduct M of the Mj acts regularly on X, and is a normal
subgroup of G disjoint from S(G) (as this is first order expressible in a language
with an additional predicate for the Mj). Since M is a regular normal subgroup
of a primitive group, M is minimal normal in G, so M ≤ Soc(G) = S(G). This
is a contradiction. �

By the last lemma, primitive permutation groups (X,G) ∈ S may be inves-
tigated via the O’Nan-Scott theorem for finite primitive permutation groups.
The statement below of this theorem is taken from [15, Theorem 4.1A]. More
detail can be found in [32].

Theorem 5.9 Let (X,G) be a finite primitive permutation group of degree n,
and let H be the socle of G. Then either

(a) H is a regular elementary abelian p-group for some prime p, n = pm =
|H|, and G is isomorphic to a subgroup of the affine group AGLm(p) with its
natural action on H (the latter identified with X); or

(b) H is isomorphic to a direct power Tm of a nonabelian simple group T
and one of the following holds:

(i) m = 1 and G is isomorphic to a subgroup of Aut(T );
(ii) m ≥ 2 and G is a group of “diagonal type” with n = |T |m−1;
(iii) m ≥ 2 and for some proper divisor d of m and some primitive permuta-

tion group (Y,K) with Soc(K) isomorphic to T d, G is isomorphic to a subgroup
of the wreath product K wr Sym(m/d) with the ‘product action’ on Y m/d and
n = (|Y |) m

d ;
(iv) m ≥ 6, H is regular, and n = |T |m (the ‘twisted wreath’ case).

In the proof of Theorem 5.1, we may assume that (X,G) is an ultraproduct
of finite primitive permutation groups (Xj , Gj) which are all of one type from
(a), (bi), (bii), (biii) or (biv). We define the type of (X,G) to be the uniform
type of the (Xj , Gj). In particular, (X,G) has type (i) if and only if Soc(G) is
abelian.

Suppose that (X,G) ∈ S is primitive, with rk(G) > rk(X) = 1, and A :=
Soc(G) is abelian. By Lemma 5.7, G has no non-trivial finite conjugacy classes
and Soc(G) is definable. Then Soc(G) is elementarily abelian or torsion-free
divisible abelian, by Lemma 5.2, so can be viewed as a vector space over a
prime field. Also, as in Lemma 5.2 and the finite O’Nan-Scott Theorem, after
identifying some x ∈ X with 0 ∈ A and each element a(x) ∈ X with a ∈ A, we
may identify X with A (acting on itself by translation) and G with AH; here H
is the stabiliser of the zero of A, its action on A is by conjugation, and under this
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action H ≤ GL(A) is irreducible. Correspondingly, if (X,G) is a non-principal
ultraproduct Πj∈J(Xj , Gj)/U of finite permutation groups, we may suppose
that for each j ∈ J we have Gj = AjHj with Aj elementary abelian and Hj an
irreducible subgroup of GL(Aj). For any definable subgroup Y ≤ G we write
Yj for the corresponding subset of Gj (it is a group for ultrafilter-many j).

In the next lemma we use Clifford’s Theorem (see e.g. [22, p.90], or [1,
12.13]). The basic assertion is that if V is a finite dimensional vector space
over a field F , and T ≤ GL(V ) is irreducible, and R / T , then we may write
V = V1 ⊕ . . . ⊕ Vl where T ≤ GL(V1)wr Syml acts naturally, and each Vi is a
homogeneous FR-module, that is a module of the form 〈W ′ : W ′ ≤ V,W ′ ∼= W 〉
(isomorphism of FR-modules), for some simple FR-submodule W of V . We
refer to the Vi as the Wedderburn components of the FT -module V .

Notice that if T ≤ GL(A), then the affine group AT acts primitively on A if
and only if A is an irreducible T -module.

Lemma 5.10 In the above notation, suppose that (X,G) ∈ F is definably
primitive of affine type, with G = AH as above. Assume that 1 = rk(X) <
rk(G), and that A is an elementary abelian p-group. Suppose B ≤ H, B is
definable and A is an irreducible FpB-module. Let C be an infinite, definable
normal subgroup of B. Then A is an irreducible FpC-module.

Proof. We suppose for a contradiction that A is a reducible FpC-module.

Claim 1. (i) Let U be an FpC-submodule of A with no definable proper
non-trivial submodules. Then U is definable.

(ii) There is a definable proper non-trivial FpC-submodule of A.

Proof of Claim. (i) We may suppose that U is infinite, as otherwise it is
definable. Let u ∈ U \ {0}. We may also suppose uC is infinite, as otherwise,
since U is an Fp-vector space, 〈uC〉 is a finite, so definable, C-invariant non-
trivial proper FpC-submodule of U , contrary to assumption. By Theorem 2.2,
there is a definable C-invariant group W such that W ≤ 〈uC〉, and uC/W is
finite. Then W is a non-trivial definable C-invariant subspace of U , and it
follows that W = U .

(ii) Since A is reducible, there is a proper non-trivial FpC-submodule U .
By (i), either U is definable, or it contains a proper non-trivial definable FpC-
submodule.

It follows in particular from Claim 1 that for ultrafilter-many j ∈ J , Cj acts
reducibly on Aj . (This also follows from ‘definably primitive implies primitive’).

Next, we examine the consequences of Clifford’s Theorem on the (finite)
groups Cj / Bj ≤ GL(Aj).

Claim 2: There is a fixed positive integer t such that for ultrafilter-many
j ∈ J , the FpBj-module Aj has exactly t Wedderburn components.

Proof of Claim: Suppose the number of Wedderburn components were in-
creasing unboundedly over the ultraproduct members. Thus for any n ∈ N there
is an ultrafilter set Jn ⊆ J where for all j ∈ Jn, Cj / Bj and Bj has more than
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n Wedderburn components. Thus suppose such an Aj has some set of Wed-
derburn components V1, V2, . . . , Vn. For each 1 ≤ k ≤ n select vk ∈ Vk \ {0}.
Let wk =

∑k
j=1 vj . Clifford theory shows that for 1 ≤ k 6= l ≤ n, the vectors

wk and wl are not in the same Bj-orbit. By our assumptions, there would be
infinitely many B-orbits on A. However, this is impossible. For since B acts
irreducibly on the Fp-vector space A, any non-trivial B-orbit on A is infinite,
so as rk(A) = 1, there are just finitely many B-orbits on A.

We now assume that there is a constant number t of Wedderburn components
for all j ∈ J . Note that if the Wedderburn components are definable then t = 1:
indeed, otherwise A is a direct sum of t > 1 infinite Fp-subspaces W (i), and we
have 0 < rk(W (i)) < rk(A), contradicting our assumption that rk(A) = 1. We
may write Aj = W

(1)
j ⊕ . . .⊕W (t)

j , with Bj ≤ GL(W (1)
j ) wr Sym(t).

Claim 3: There is a positive integer s such that, for almost all j, each
Wedderburn component is a direct sum of exactly s FpCj-irreducibles.

Proof of Claim: Again, we suppose not. Then for any positive integer n,
it follows that for almost all j, each Wedderburn component W (i)

j in Aj is a

direct sum of more than n irreducible Cj-subspaces, each isomorphic to U
(i)
j ,

say. The ultraproduct U (i) of the U
(i)
j is an FpC-module with no definable

proper non-trivial submodules, so is definable (by Claim 1(ii)), and it follows by
rank considerations that U (i) is finite, so we may suppose the U (i)

j have a fixed
finite size, which, by Clifford theory, does not vary with i. Hence, the kernel of
the action of Cj on U

(i)
j , and hence on W

(i)
j , has a fixed finite index. It follows

that the groups Cj have a fixed finite order, contradicting the assumption that
C is infinite.

Thus, for each j, each Wedderburn component is a direct sum of boundedly
many Cj-irreducibles. Hence, Wedderburn components are uniformly definable,
by Claim 1. Also, Wedderburn components are conjugate, so have the same size,
so as (for ultrafilter-many j) there are exactly t of them, for any n Wedderburn
components have size at least n for ultrafilter-many j. It follows immediately
(as rk(A) = 1) that (for ultrafilter-many j) there is a unique, Cj-irreducible
Wedderburn component of Aj . This proves the lemma. �

5.2 rk(G) = 2

Proposition 5.11 Let (X,G) ∈ F be a definably primitive pseudofinite permu-
tation group, and suppose that rk(X) = 1 and rk(G) = 2. Then conclusion (ii)
of Theorem 5.1 holds.

Proof. The proof proceeds in a series of claims.

Claim 1. The group G contains a normal subgroup S of finite index which
is soluble, and such that S′ has rank 1 and contains an abelian regular normal
subgroup A / G.
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Proof of Claim 1. By Theorem 1.2, we know that G is definably a soluble-
by-finite group. Let T be such a definable, normal, soluble subgroup of G of
finite index. Since T is soluble, there is m such that T (m) = {1}, so there is a
least n ∈ N such that rk(T (n+1)) < 2. Let S = T (n). By Corollary 2.4, S is
definable. Now by our choice of S, it has finite index in G, and S′ is of rank 1 or
0. Since S is normal in G, so is S′. If rk(S′) = 0 then S′ = {1} (by Lemma 5.7),
so S must be abelian, composed only of elements of finite G-conjugacy classes,
a contradiction to Lemma 5.7. So rk(S′) = 1. From Theorem 2.11, we know
that S′ has a definable characteristic subgroup A of finite index which is finite-
by-abelian (and BFC). Thus the bottom finite part may be taken to be A′,
so characteristic in S′, so normal in G, so trivial. Thus S′ has a finite index
abelian subgroup A, which is characteristic in S′. Thus A is normal in G, and
so is transitive on X. In particular, A is regular.

It follows from Claim 1 that (X,G) is of affine type as in Lemma 5.2. We
therefore write G = AH, adopting the notation Gi = AiHi used earlier, with
(X,G) an ultraproduct of finite permutation groups (Xi, AiHi), each of affine
type as in Theorem 5.9(a). We view A as a vector space over a prime field
F . The group Ai is an elementary abelian pi-group, so may be viewed as an
Fpi -vector space, with Hi ≤ GL(Ai) irreducible.

Claim 2. There is f : N → N such that if Q is a finite group and R is a
group of exponent n acting semi-regularly on Q, then |R| < f(n).

Proof of Claim 2. See [1, 40.6].

Claim 3. The group H has a definable abelian normal subgroup Y of finite
index such that A is an irreducible FY -module.

Proof of Claim 3. There are two cases, according to whether or not char(F ) =
0.

Suppose first that char(F ) = 0, so pi is not constant on any ultrafilter-set.
Let a ∈ A \ {0}, and suppose h ∈ H fixes a. Then CA(h) is a definable Q-
subspace of A, so is infinite, so has finite index in A (as rk(A) = 1); hence, as
A is divisible, CA(h) = A. As H acts faithfully on A, it follows that h = 1,
that is, H acts semi-regularly on A. Thus, we may suppose that Hi acts semi-
regularly on Ai for almost all i. Since H is infinite, and (by Claim 2) the
exponent of the Hi increases with |Hi|, it follows that H has infinite exponent.
In particular, by ω-saturation of ultraproducts there is h ∈ H of infinite order.
Now C := CH(CH(h)), which equals Z(CH(h)), is an abelian definable subgroup
of H which contains 〈h〉 so is infinite. As rk(H) = 1, |H : C| is finite, and
Y :=

⋂
(Ck : k ∈ H) is a definable finite index abelian normal subgroup of H.

If v ∈ A \ {0} then vY contains an infinite definable Y -invariant subspace of
A, by Theorem 2.2. Since F has characteristic 0 and rk(A) = 1, this subspace
equals A. Since v is arbitrary, Y is irreducible on A.

Next, suppose that char(F ) = p, a prime. Then we may suppose pi = p
for all i. Now by Lemma 5.10, any infinite definable normal subgroup of H is
irreducible on A, so to prove the claim it suffices to show that H has an infinite
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definable abelian subgroup (for this will have finite index in H, so we can then
take Y to be the intersection of its conjugates). Arguing by contradiction,
we may suppose H has finite exponent, as otherwise we may choose a double
centraliser C as above. By Lemma 5.10, we may replace H by any definable
normal subgroup of finite index. Therefore, using Theorem 2.11 and dropping
to a finite index subgroup of H if necessary, we may suppose that H ′ is a finite
subgroup of Z(H); so in particular H is nilpotent of class 2. We view H as a
permutation group on A, so for a ∈ A we write Ha for CH(a). By Lemma 5.5,
H has finitely many orbits on A \ {0}, say U1, . . . , Ur. For each i = 1, . . . , r let
ai ∈ Ui. Since H acts irreducibly on A and F = Fp is finite, each aHi is infinite,
so Hai cannot have finite index in H so must be finite. Then, as H ′ is finite,
H ′Hai is a finite normal subgroup of H. Put Li := CH(H ′Hai). Then for each
i, Li is an infinite definable normal subgroup of H, so |H : Li| is finite. Put
L := L1 ∩ . . .∩Lr, a definable normal subgroup of H. Also |H : L| is finite and,
by Lemma 5.10, L is irreducible on A. Also, Lai

≤ Z(L), since L ≤ CH(Hai
).

So as L/H, La ≤ Z(L) for all a ∈ Ui, so for all a ∈ A\{0}. As L acts faithfully
on each orbit aL (by irreducibility), it follows that La = 1 for all non-zero a ∈ A,
that is, L acts semi-regularly on A \ {0}. Since H has finite exponent, so does
L. It follows by Claim 2, applied to the corresponding finite groups Li acting
on Ai, that L is finite. Since |H : L| is finite, this is a contradiction, so proves
Claim 3.

We now apply Proposition 2.8 to the abelian normal subgroup Y of H of
finite index, acting definably and F -irreducibly on A. So K := Z[Y ]

/
annZ[Y ](A)

is an interpretable pseudofinite field, and its additive group is identified with
A. Now the action by conjugation of H on Y extends naturally to an action
on Z[Y ]: for

∑l
i=1(−1)εiyi ∈ Z[Y ] and h ∈ H we define h(

∑l
i=1(−1)εiyi)h−1 =∑l

i=1(−1)εihyih
−1. This action preserves both the additive structure and mul-

tiplicative structure of Z[Y ].

Claim 4. The action of H on Z[Y ] fixes the ideal annZ[Y ](A).

Proof of Claim. Suppose y =
∑l
i=1(−1)εiyi ∈ annZ[Y ](A). Then for any

a ∈ A we have y · a = 0. Let h ∈ H and let x = hyh−1 = h(
∑l
i=1(−1)εiyi)h−1.

We must show that the endomorphism x maps a to 0. So we compute:

x · a = h(
l∑
i=1

(−1)εiyi)h−1 · a

=
l∑
i=1

(−1)εihyih
−1ahy−1

i h−1

= h
( l∑
i=1

(−1)εiyi(h−1ah)y−1
i

)
h−1

= h(y · (h−1ah))h−1

= 0
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We conclude that there is an action of H on the field K, induced from
conjugation, that preserves its additive and multiplicative structure. In partic-
ular, H induces a group of automorphisms of K. The group Y embeds in the
multiplicative group K∗.

Claim 5. H induces the trivial group on K.

Proof of Claim. Since Y ≤ CH(K) and |H : Y | is finite, H
/
CH(K) is a

finite group of automorphisms of the pseudofinite field K, of order m, say. Now
we consider that G is an ultraproduct of finite groups. So for ultrafilter-many
j ∈ J , the formulas for K interpret a field Kj in the group Gj and the formulas
for H

/
CH(K) interpret a group of automorphisms Dj of Kj of order m. So by

Los’s Theorem H
/
CH(K) is a cyclic group of order m. Furthermore, Kj must

be definably an m-dimensional vector space over the fixed field Ej of a generator
of Dj . In the ultraproduct this would mean that rk(K) = m rk(E) ≥ m; for
clearly, as K is infinite, so is E, so rk(E) ≥ 1. Since K is in definable bijective
correspondence with A we have rk(K) = 1, and so we deduce that m = 1. So
H = CH(K).

Finally, we show that we may assume H = Y , and that |K∗ : Y | is finite. Let
t, s ∈ H, and let a ∈ A\{0}. There are unique c, d ∈ K∗ such that tat−1 = c · a
and sas−1 = d · a. Suppose c =

∑l
i=1(−1)εici and d =

∑l
i=1(−1)δidi and

so tat−1 =
∑l
i=1(−1)εiciac

−1
i and sas−1 =

∑l
i=1(−1)δidiad

−1
i . Then an easy

calculation shows that stat−1s−1 = tsas−1t−1. But the action by conjugation
of H on A is faithful. Since the above computation is for arbitrary a ∈ A it
follows that st = ts. So H is an abelian group and hence in the above proof we
may take H = Y . Since rk(K) = rk(K∗) = 1 and rk(G) = 2, it follows that
|K∗ : Y | is finite. It is now clear that AH satisfies the conclusion of Proposition
2.8. �

5.3 rk(G) ≥ 3

To prove Theorem 5.1, it remains for us to prove the following proposition.

Proposition 5.12 Let (X,G) ∈ F be a definably primitive permutation group,
and suppose that rk(X) = 1 and rk(G) ≥ 3. Then there is a definable pseud-
ofinite field K such that PSL2(K) ≤ G ≤ PΓL2(K), and G has the natural
action on PG1(K) (identified with X). Furthermore, |G : PSL2(K)| is finite,
so rk(G) = 3.

The remainder of this paper is a proof of Proposition 5.12. As in the
case when rk(G) = 2, we suppose that (X,G) is a non-principal ultraprod-
uct Πj∈J(Xj , Gj)/U of finite primitive permutation groups, and that all the
(Xj , Gj) have the same type in the sense of the O’Nan-Scott Theorem, Theo-
rem 5.9. The assumptions of Proposition 5.12 hold from now on.

We first eliminate the affine case. So suppose that Soc(G) is an abelian group
A, that is, case (a) of 5.9 holds. As in the proof of Proposition 5.11, we have
G = AH, where A is identified with X, and H is the stabiliser of the identity 0
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of A. Again, we view A as a vector space over a prime field, and H ≤ GL(A)
is irreducible. Replacing J by a subset in the ultrafilter if necessary, we may
suppose that there is a corresponding decomposition Gj = AjHj for each j ∈ J .

Lemma 5.13 The characteristic of Aj is constant on an ultrafilter set.

Proof. Suppose not. Then since the Aj are uniformly definable, we deduce
that A is a Q-vector space. Now H ≤ GL(A). Pick a ∈ A \ {0}. By the rank
assumption rk(Ha) ≥ 1, so there is h ∈ Ha \ {1}. Since a has infinite order,
CA(h) is an infinite definable subgroup of A, so |A : CA(h)| is finite. By the
divisibility of A, h fixes the whole of A, contrary to the faithfulness of G on X.
�

Thus, we may assume that A (and also the Ai) has the structure of a vector
space over Fp, with H ≤ GLκ(p) for some infinite cardinal κ.

We consider now a maximal chain of definable groups 1 = N0 /N1 . . . /Nr =
H, with rk(Ni) < rk(Ni+1) for each i = 0, . . . , r − 1. By Lemma 5.10 and
induction, Ni acts irreducibly on A for each i > 0.

Consider first N1. Let B be the definable normal subgroup of N1 consisting
of its finite conjugacy classes.

Suppose first that B is infinite. In this case, B is a characteristic subgroup
of N1 of finite index, so we may replace N1 by B, that is, we assume all H-
conjugacy classes in N1 are of finite (hence bounded) size. Thus, N1 is finite-by-
abelian, and we may suppose it is centre-by-abelian. By Lemma 5.10, N1 acts
irreducibly on A. Hence all N1-orbits on A are infinite, so for non-zero a ∈ A,
rk((N1)a) = rk(N1) − 1. Thus, (N1)aN ′1 is a definable normal subgroup of N1

of rank strictly less than rk(N1), so by minimality of rk(N1), it is finite. Hence,
rk(N1) = rk((N1)a)+1 = 1. Since N1 is irreducible on A, (A,AN1) is a primitive
permutation group with rk(AN1) = 2, and it follows by Proposition 5.11 that
AN1 is a subgroup of AGL1(F ) for some definable field F . Since rk(H) > 1, N2

exists and as F is a prime field we must have AN2 ≤ AΓL1(F ) (this is standard
– compare the proof of Proposition 5.11). Thus, as j ranges through J there
is a uniformly definable finite field Fj with additive group Aj , and elements
of (N2)j induce field automorphisms which are arbitrarily large powers of the
Frobenius. In particular, by taking fixed points, the Aj have definable subgroups
of arbritrarily large order and index, contradicting that rk(A) = 1.

Thus, B is finite. Then let yN1 be any infinite conjugacy class of N1. The
Indecomposability Theorem (Theorem 2.2) shows that there is a definable, nor-
mal subgroup Ny /N1 with Ny ⊆ 〈yN1〉 and yN1/Ny finite. By our assumptions
Ny must have finite index in N1. Furthermore, the groups Ny are uniformly
definable (compactness), so as there are no infinite descending chains of uni-
formly definable subgroups, N1 has a minimal, definable normal subgroup of
finite index. Since this is characteristic in N1 we replace N1 with this latter
group. Now any definable normal subgroup of N1 is of rank less than rk(N1),
so is finite. It follows by Proposition 3.4 that either N1 is soluble, or R(N1) is
finite and N1/R(N1) is a product of finitely many definable finite or pseudofinite
non-abelian simple groups, with just one pseudofinite one. If N1 is soluble, then
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as N ′1 is definable (by Corollary 2.4) it is finite, so N1 is a BFC group, contrary
to our assumption.

We have reduced to the case when N1/R(N1) = M1 ×M2, where M1 is a
simple pseudofinite group and M2 is a product of finitely many finite simple
groups. Let Mi be the preimage of Mi in N1, for each i = 1, 2. The groups Mi

are definable. By replacing N1 by CM1
(R(N1)) (a subgroup of finite index), we

reduce to the case when N1 is a finite-centre-by-simple and perfect, so quasisim-
ple. Notice also, by our knowledge of rank 1 groups inM (Theorem 2.11), that
rk(N1) > 1. Since the group N1/Z(N1) is an infinite pseudofinite simple group,
it is a group of Lie type, possibly twisted, over a pseudofinite field. Since A
is an irreducible FpN1-module (by Lemma 5.10), the affine permutation group
(A,AN1) is primitive. Hence, by Lemma 5.5, for each a ∈ A \ {0} the point
stabiliser (N1)a has finitely many orbits on A. We claim that there is a field
F extending Fp such that AN1 ≤ AΓLn(F ), i.e., that A has the structure of
a finite-dimensional vector space over some field F , with N1 ≤ ΓLn(F ). This
follows from the description of infinite dimensional affine permutation groups
with finitely many orbits on pairs in [31] (see Proposition 3.6, and also Section
7). In fact, since N1 is quasisimple, easily N1 ≤ GLn(F ). Likewise, again via
[31, Proposition 3.6], we may suppose that Aj(N1)j ≤ AGLn(Fj). Note that
the finite fields Fj have unbounded size.

The following claim now eliminates the affine case in Proposition 5.12.

Claim. Suppose that (X,G) ∈ F satisfies all the reductions above. Then
rk(X) > 1.

Proof of Claim. Suppose for a contradiction that rk(X) = 1, that (X,G)
is an ultraproduct as above, and the above reductions and notation apply. By
Lemma 5.13, A has prime characteristic p. For ultrafilter-many j ∈ J , Aj is
over a finite field of characteristic p. We suppose that H is a Chevalley group
Chev(K). By Lemma 5.5, G has finitely many orbits on X2. So by Remark 5.6,
the assumptions of Section 3 of [31] apply.

We claim that Hj has the same characteristic p as Aj . By the main theorem
of Landazuri and Seitz [30], if Hj = Chev(qj) and char(Hj) 6= p then the least
possible dimension of an irreducible characteristic p representation of Chev(qj)
increases with qj . Thus, we would be in the ‘unbounded dimension’ case of
[31], handled by Proposition 3.6 there, and the cross-characteristic case does
not arise.

Thus, Hj has the form Chev(paj ) for some aj ∈ N. Let Pj be a Sylow p-
subgroup of Hj , that is, a maximal unipotent subgroup. It is easily checked that
the Pj are uniformly definable, as j varies in J . (This follows since maximal
unipotent subgroups of finite simple groups of Lie type are uniformly definable,
by [7, 5.3.3(ii), 13.6.1].) Since non-trivial Pj-orbits on Aj have size a power of
p, and Pj fixes the zero vector so acts on Aj \{0} which has size pnj −1 for some
nj , by divisibility considerations Pj has a non-trivial fixed point on Aj . Thus,
CAj

(Pj) is a definable non-trivial subspace of Aj , proper by faithfulness. Since
A is finite-dimensional and |F | is infinite, it follows that rk(A) ≥ 2, completing
the proof of the claim.
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Next, we eliminate types (b) (ii)-(iv) of Theorem 5.9.

Lemma 5.14 If (X,G) ∈ F is a primitive permutation group with rk(X) = 1,
then for ultrafilter many j ∈ J , (X,G) is not of diagonal type, product action
type, or twisted wreath type of the O’Nan-Scott Theorem.

Proof. In the diagonal case, by Lemma 5.1 of [31] we may suppose that
Soc(G) = T k for some definable non-abelian pseudofinite simple group T , and
that X may be identified with the coset space in T k of a diagonal subgroup of
T k. Thus, the rank of X equals the rank of T k−1, which cannot be 1.

If (X,G) is of product action type, then there is a definable primitive infinite
permutation group (Y,H) such that X is in definable bijection with Y l for some
integer l > 1. Thus, rk(X) = l rk(Y ) > 1, a contradiction.

Finally, Lemma 5.3 of [31] eliminates the twisted wreath case. �

To complete the proof of Proposition 5.12, it remains to handle the case of
non-abelian simple socle, that is, to prove the following.

Lemma 5.15 Suppose (X,G) is a definable primitive permutation group in F ,
that rk(X) = 1, and that Soc(G) is a non-abelian simple group. Then there is a
pseudofinite field F such that PSL2(F ) ≤ G ≤ PΓL2(F ), in its natural action
on 1-spaces of PG1(F ). Furthermore, rk(G) = 3.

Proof. The permutation group (X,G) is an ultraproduct of finite primitive
permutation groups (Xj , Gj). By Lemma 5.5, Gx has finite number, say r, of
orbits on X, and the same statement holds for ultrafilter-many j ∈ J . The group
Soc(G) is a pseudofinite simple group, so is a Chevalley group (possibly twisted)
over a pseudofinite field. It follows that there is a fixed Lie type L(q) such that
for ultrafilter-many j ∈ J , Soc(Gj) has Chevalley type L(q). In particular, as
the Lie rank of L(q) is fixed, q is unbounded. By the main theorem of Seitz
[41], it follows that the action of Gj on Xj is parabolic (i.e. is on the cosets of a
maximal parabolic subgroup Pj) for almost all j ∈ J . Thus, it suffices to show
that the only possibility for a coset space of a parabolic subgroup to have rank
1 is the projective line.

We may suppose that Gj = Soc(Gj) for all j, since the coset space Cos(Gj :
Pj) is in definable bijection with Cos(Soc(Gj) : Soc(Gj)∩ Pj). We remark that
Pj is (uniformly) definable in Gj . This is proved in [14, Lemma 6.4], and follows
rapidly from the uniform definability of maximum unipotent subgroups (see the
proof of the last claim) and the Bruhat decomposition.

Let P be the ultraproduct of the Pj . We may identify X with Cos(G : P ).
Then G is bi-interpretable (in fact, bi-definable) with a rank 1 field or difference
field, and the same holds, uniformly, for ultrafilter-many of the Gj . On an
ultraproduct of finite fields, by the results in [9] (see also [10, Section 3]), the
rank of a definable set X is determined by the approximate cardinalities of the
corresponding Xj . By bi-definability, this is transferred to G and the Gj . That
is, if Gj is bi-interpretable with Fqj

then an ultraproduct of uniformly definable
sets each of cardinality roughly µqdj has rank d. Thus, using that the Pj are
uniformly definable in the Gj , we must verify the following claim.
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Claim. Let G(q) be a group of Lie type (possibly twisted) over a field
Fq, with G 6= PSL2(q), and let P (q) be a parabolic subgroup of G(q). Then
|G(q) : P (q)| > O(q).

Proof of Claim. If G(q) is a classical group, then this follows from the
main theorem of [12], which determines the permutation representations of the
classical groups of minimal degree. (Recall that the degree of a permutation
group (X,G) is |X|.)

So we may suppose that G is an exceptional group. We may also suppose
that the Lie rank of G(q) is at most 2. For otherwise, G(q) has a simple subgroup
H(q) of Lie rank 2 with H(q) 6≤ P (q). Since |G(q) : P (q)| ≥ |H(q) : P (q)∩H(q)|,
we may then replace G(q) by H(q).

The degrees of the parabolic permutation representations of 2B2(q) and
2G2(q), which are 2-transitive, are listed in the proof of Theorem 5.3 [6], and are
of order O(q2) and O(q3), respectively. Those of the groups 2F4(22n+1), 3D4(q)
and G2(q) correspond to the numbers of points and lines in the corresponding
generalised polygons: here, the point set and line set of the polygon are coset
spaces of appropriately chosen parabolics, two cosets incident if and only if not
disjoint. A generalised polygon has associated parameters s and t, where there
are s+ 1 points incident with each line and t+ 1 lines incident with each point.
By [27, A,4], the values of (s, t) for the polygons of type G2, 3D4(q) and 2F4(q)
are respectively (q, q), (q, q3) and (q, q2). In [35, 1.5.4] there are formulas giving
the numbers of points and lines in a generalised polygon in terms of the param-
eters s, t. From this data, it is easy to see that for parabolic subgroups P (q) of
these groups G(q), we have |G(q) : P (q)| ≥ O(q2), as required.

Given the claim, we know that PSL2(F ) ≤ G ≤ PΓL2(F ), and G has the
natural action on the projective line. To check that rk(G) = 3, we must show
that |G : PSL2(F )| is finite. If this is false, there is a pseudofinite supersimple
finite rank structure consisting of a pair (F,B) where F is a field and B is an
infinite group with a definable faithful action on F as a group of automorphisms.
It is easy to see that there is b ∈ B such that Fix(b) is an infinite field and
Fix(b) < F is an infinite degree extension. This contradicts that rk(F ) is finite.
�

6 Further Observations

We note here two results related to Questions 3 and 4 from the Introduction.
The first is an addendum to Theorems 1.2 and 1.3. We would like to prove it
without (CFSG).

Proposition 6.1 Let G ∈ F be a simple group of rank 3. Then G ∼= PSL2(F )
for some pseudofinite field F .

Proof. By Proposition 2.14, G is a group of Lie type.
First note that by Theorem 1.2 and 2.11, there is no infinite simple group in

F of rank less than 3. Hence, we may suppose that G has Lie rank 1. Indeed,

35



otherwise G has a parabolic subgroup P = UL, where L itself contains a simple
group of Lie type over the same field, is definable, and has infinite index in G so
has lower rank. (Here, L is definable, since it is a product of a maximal torus
and a bounded number of root groups, all definable by results from [39, Chapter
5]; see also [7, Section 8.5]. The simple group is L′, so is also definable.)

Thus, it suffices to show that ultraproducts of Suzuki groups 2B2(22n+1) and
Ree groups 2G2(32n+1) have rank greater than 3. By [39, Proposition 5.4.6],
these groups are uniformly bi-interpretable (over parameters) with difference
fields (F22k+1 , x 7→ x2k

) or (F32k+1 , x 7→ x3k

) respectively. The ultraproduct of
the difference field has rank 1. It follows that, putting q := 22k+1 (or q = 32k+1

for the Ree groups), uniformly definable sets in the fields of cardinality roughly
µqd yield definable sets in the ultraproduct of rank d. It follows by consideration
of orders (see e.g. [23, p. 135]) that an ultraproduct of finite Suzuki groups has
rank 5, and an ultraproduct of finite Ree groups of type 2G2 has rank 7. �

Theorem 6.2 Let (X,G) = ΠJ∈J(Xj , Gj)/U be a non-principal ultraproduct
of finite primitive permutation groups, with (X,G) ∈ F . Then there is U ∈ U
and some c ∈ N, such that if j ∈ U then |Gj | ≤ |Xj |c.

Proof. If point stabilisers Gx are finite, then the result is obvious, so we
may suppose that for x ∈ X we have rk(Gx) ≥ 1, so (X,G) is primitive by
Lemma 2.7. Thus, the structure theory of [31], and in particular Section 7,
applies. We may suppose that all the finite permutation groups (Xj , Gj) are
primitive, and all have the same type in the sense of the O’Nan-Scott Theorem.
In the affine case, by supersimplicity and [31, Theorem 1.1] it is easy to check
that there is a natural number n, fixed on an ultrafilter set, such that Xj can
be identified with a vector space Vn(q) with Gj ≤ AΓLn(q). (Observe here that
a family of primitive permutation groups (Xj , Gj) = (Vn(q),AΓLn(q)), where
n → ∞ as j → ∞, cannot have a supersimple nonprincipal ultraproduct; for
AΓLn(q) has a chain of uniformly definable subgroups – namely stabilisers of
linearly independent tuples of vectors – with successive indices arbitrarily large.)
Thus, |X| = qn and |G| ≤ qn

2+2, so it suffices to choose c so that cn ≥ n2 + 2.
In the almost simple case, again by [31, Theorem 1.1.1] we find that for some
n, Soc(Gj) has fixed Lie rank n. In this case, the result follows from the main
theorem of [2]. The product action and diagonal action cases are also easily
handled, either directly or using [2]. �

Remark 6.3 From Theorem 6.2 and the results in [31] it should be possible to
answer the final question in the Introduction, showing that there is a function
f : N→ N such that if (X,G) ∈ F is definably primitive then rk(G) ≤ f(rk(X)).
The idea is that (X,G) should essentially be an ultraproduct of an asymptotic
class, uniformly bi-interpretable with a class of finite fields or difference fields,
so that the asymptotic result in the last theorem should convert to a bound on
the rank. Care is needed with how the exponent c provided by [2] varies with
the Lie rank n. We have not verified the details.
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